

Actionable Agile Metrics for
Predictability
An Introduction

Daniel S. Vacanti

This book is for sale at
http://leanpub.com/actionableagilemetrics

This version was published on 2016-05-16

ISBN 978-0-9864363-2-1

This is a Leanpub book. Leanpub empowers authors
and publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book
and build traction once you do.

© 2015 - 2016 Daniel S. Vacanti

http://leanpub.com/actionableagilemetrics
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Tweet This Book!
Please help Daniel S. Vacanti by spreading the word
about this book on Twitter!

The suggested hashtag for this book is #ActionableAgile.

Find out what other people are saying about the book
by clicking on this link to search for this hashtag on
Twitter:

https://twitter.com/search?q=#ActionableAgile

http://twitter.com
https://twitter.com/search?q=%23ActionableAgile
https://twitter.com/search?q=%23ActionableAgile

To Ann, Skye, Sicily, and Manhattan: the only measures
of value in my life.

Contents

Preface . 1

PART ONE - FLOW FOR PREDICTABILITY 8

Chapter 1 - Flow, Flow Metrics, and Predictability 9

Chapter 2 - The Basic Metrics of Flow 20

Chapter 3 - Introduction to Little’s Law 37

PART TWO - CUMULATIVE FLOW DIAGRAMS
FOR PREDICTABILITY 60

Chapter 4 - Introduction to CFDs 61

Chapter 5 - Flow Metrics and CFDs 86

Chapter 6 - Interpreting CFDs 102

Chapter 7 - Conservation of Flow Part I 116

Chapter 8 - Conservation of Flow Part II 133

Chapter 9 - Flow Debt 144

PART THREE - CYCLE TIME SCATTERPLOTS FOR
PREDICTABILITY 157

CONTENTS

Chapter 10 - Introduction to Cycle Time Scatter-
plots . 158

Chapter 10a - Cycle Time Histograms 171

Chapter 11 - Interpreting Cycle Time Scatterplots176

Chapter 12 - Service Level Agreements 188

PART FOUR - PUTTING IT ALL TOGETHER FOR
PREDICTABILITY 201

Chapter 13 - Pull Policies 202

Chapter 14 - Introduction to Forecasting 225

Chapter 15 - Monte Carlo Method Introduction . 233

Chapter 16 - Getting Started 242

PART FIVE - A CASE STUDY FOR PREDICTABILITY254

Chapter 17 - ActionableAgileMetrics at Siemens
HS . 255

Acknowledgements 280

Bibliography . 283

About the Author 286

Preface
Your process is unpredictable. What you may not re-
alize, though, is that you are the one responsible for
making it that way. But that is not necessarily your
fault. You have been taught to collect the wrongmetrics,
implement the wrong policies, and make the wrong
decisions. Together, we can do better.

Up until now you have probably assumed that the
reason your process is unpredictable is due to circum-
stances completely outside of your control. However,
you have much more control over the way you work
than you think you do.Whether explicit or not, you have
put policies in place that specifically prevent you from
being predictable. Amongst other things you start new
work at a faster rate than you finish old work, you work
on toomany items at the same time, you ignore systemic
dependencies and impediments, and you expedite re-
quests that do not need to be expedited. You, in effect,
initiate a denial of service attack on yourself, and then
wonderwhy it takes so long for things to get things done.

But all of those policies are under your control.
If we, as knowledge workers, want to get to a pre-

dictable world, we must first start by controlling the
policieswe can control. Taking this controlwill seemun-
comfortable at first. It will mean saying no to customer
requests to start new work immediately. It will mean
placing much less emphasis on upfront estimation and
planning. It will mean looking at a different set of met-
rics than the ones you have been trained to track. Those
metrics will tell you how predictable you are and what
actions to take to improve. If you choose to collect the

1

Preface 2

metrics suggested by this book, youwill see that the data
provided by them will immediately reflect policies you
have in place. That data will in turn suggest the changes
to your policies necessary to bemore predictable. Those
policy changes will themselves be reflected in the new
data you collect after the change. And so on and so on.

Your process is unpredictable. You know it. Your
customers know it. Now it is time to do something about
it.

WhyWrite this Book?

Because our customers demand predictability. Because
you need someone on your side who has been asked
tough questions and has found a way to give mean-
ingful answers. Because most organizations that I visit
are either uninformed or have beenmisinformed about
what metrics and analytics they need to track to be
predictable.

But to get you where you need to be, I am going to
ask you provocative questions. I am going to challenge
your assumptions about what true Agility is. I maymake
you uncomfortable with some of the conclusions that I
draw. I hope you will forgive me for all of these as my
only intention is to make your process better. After all,
as I just said, I am on your side.

Who Should Read this Book

Anyone who has ever been asked to give an estimate
should read this book. Likewise, anyone who has ever
asked for an estimate should read this book.

Analysts, developers and testers need to knowhow to
stop giving estimates and how to start making accurate

Preface 3

predictions.
Product owners, project managers, and executives

need to know what makes for a meaningful prediction
and how to hold teams accountable to make those pre-
dictions.

Conventions Used

All metrics and analytics will be capitalized. For exam-
ple: Work In Progress, Cycle Time, Throughput, Cumula-
tive Flow Diagram, Scatterplot, etc.

I am also going to capitalize all methodology names.
For example: Agile, Scrum, Kanban, etc.

Lastly, I amgoing to use thewords “process” and “sys-
tem” interchangeably. I will try to make the distinction
clear when a distinction is necessary.

How to Read

This book is intended to be read in order as the concepts
in later chapters are built on the concepts developed in
earlier ones. However, each chapter can stand alone,
and, where possible, when I re-examine a concept that
has already been explained, I will try to reference the
part of the book that contains the more detailed expla-
nation.

PART ONE – FLOW FOR PREDICTABILITY
Chapter 1 defines my notion of predictability. It

introduces the metrics that are necessary to track to
become predictable, and it will explain what it means
to turn those metrics into actionable interventions.

Chapter 2 is a detailed discussion of the basicmetrics
of flow. The rest of the book will assume knowledge of
what those metrics are and how they are defined.

Preface 4

Chapter 3 is an introduction to Little’s Law. If you
want to be predictable, you have to understand why
Little’s Law works. Period.

PART TWO – CUMULATIVE FLOWDIAGRAMS FOR
PREDICTABILITY

Chapter 4 is an in depth explanation of what Cu-
mulative Flow Diagrams (CFDs) are and what they are
not. This chapter is a must read because most previous
agile publications that dealwith CFDs are erroneous and
most agile electronic tools build them incorrectly. I will
attempt to remedy all of that.

Chapter 5 explains how to read all of the basic met-
rics of flow off of a CFD. The ability to read thesemetrics
is one of the biggest reasons to use CFDs in the first place.

Chapter 6 explains how to interpret the results of a
generated CFD. Many common patterns that appear in
CFDs are explained.

Chapter 7 begins the exploration of the assumptions
behind Little’s Law and CFDs by looking at process ar-
rivals and departures. If you get these right then you
have gone a long way toward predictability. Not in-
consequentially, arrivals and departures represents the
first part of a principle known as the Conservation of
Flow

Chapter 8 continues the discussion of Little’s Law’s
assumptions by looking at the second part of the princi-
ple of Conservation of Flow. This second part explains
why just-in-time commitments and just-in-time prioriti-
zation is possible and necessary for predictability.

Chapter 9 introduces the little-known concept of
Flow Debt, how to see it on a CFD, and why it kills
predictability. What actions to take when it accumulates
are also discussed.

PART THREE – CYCLE TIME SCATTERPLOTS FOR
PREDICTABILITY

Preface 5

Chapter 10 is an in depth examination of the second
most important analytical chart: the Cycle Time Scatter-
plot.

Chapter 11 explains how to interpret a Cycle Time
Scatterplot.Many commonpatterns that appear on Scat-
terplots are explained.

Chapter 12 introduces one of the least known and
least understood practices needed for predictability: the
Cycle TimeService Level Agreement (SLA). Some thoughts
on how to set SLAs and manage to them are explored.

PART FOUR – PUTTING IT ALL TOGETHER FOR
PREDICTABILITY

Chapter 13 explores pull policies and how those
policies are one of themain sources of variability in your
process.

Chapter 14 presents a survey of some forecasting
techniques and the pros and cons of each.

Chapter 15 is my take on some of the advantages
and pitfalls of the Monte Carlo Method as they pertain
to predictability.

Chapter 16 presents a short guide on how to get
started and outlines some pitfalls to watch out for as
you begin. If you get overwhelmed with your own data
initiative, this chapter is a good place to start.

PART FIVE – A CASE STUDY FOR PREDICTABILITY
Chapter 17 re-examines a previously published case

study from Siemens Health Services. This case study has
been updated with an emphasis on how Siemens put
into practice all of the principles in this book.

There is another disclaimer I should mention up
front. The concepts in the book are based on the prin-
ciples of flow. What flow is and how to achieve it is a
topic for a whole book in itself, so I will not spend much
time on those definitions. I refer you to the work of Don
Reinertsen and some of the other authors listed in the

Preface 6

Bibliography for a more detailed discussion of flow.
Also, I believe the concepts presented throughout are

relevant regardless of your chosen Agile implementa-
tion.Where applicable, Iwill try to point out howactions
might differ based on a specific Agile methodology.

Lastly, this book has a distinct software development
bent to it, but youneednot be in the software product de-
velopment industry nor do you need to be familiar with
any Agile methodology to understand these principles.
They can be equally applied to any process regardless
of domain.

ActionableAgile.com

Finally, and unless otherwise noted, all of the images of
the analytics charts and graphs that are presented in this
book were built using the ActionableAgileTM Analytics
tool. This tool is one thatmy companyhas developed and
can be found at:

https://www.actionableagile.com

You can find a fully functional free demo of the tool
at:

https://www.actionableagile.com/analytics-
demo

And you can sign-up for a free trial version of the tool
for use with your own data at:

https://www.actionableagile.com/cms/analytics-
free-trial-signup.html

Preface 7

In addition to the tool, accompanying blog posts,
book updates and errata, videos, etc. can also be found
at the ActionableAgileTM website.

PART ONE - FLOW FOR
PREDICTABILITY

8

Chapter 1 - Flow, Flow
Metrics, and Predictability
I first met Bennet Vallet in the spring of 2012. At the
time, Bennet was a Director of Product Development
for Siemens Health Services (HS) located just outside
of Philadelphia, Pennsylvania. We met one night at an
Agile Philly event where I was giving a talk on the prin-
ciples of flow. He came up to me after my presentation
and asked if we could set up some time later to discuss
the problems he was facing at HS. Of course I agreed.

We spoke on the phone the following day and during
that call Bennet outlined his thoughts on all the issues
he was facing at HS. Those issues are fully documented
in the case study presented in Chapter 17 so I will not
go into any detail here. Suffice it to say, however, that
toward the end of the call, I suggested to Bennet that to
fix these problems we must first consider what is most
important to his customers. In other words, if I were to
speak to his customers, what would they tell me were
the three most important things to them?

“Oh, that’s easy,” Bennet replied. “The three most
important things to our customers are predictability,
predictability, and predictability.”

Predictability

“When will it be done?”
That is the first question your customers ask you

once you start work for them. And, for the most part, it
is the only thing they are interested in until you deliver.

9

Chapter 1 - Flow, Flow Metrics, and Predictability 10

Whether your process is predictable or not is judged by
the accuracy of your answer. Think about how many
times you have been asked that question and think how
many times you have been wrong.

Now think about some of the practices you have put
in place to come up with your answer. Maybe you have
an Agilemethodology you are fond of. Maybe you prefer
a more traditional project management approach. But
are either of those practices actually helping?

As a case in point, Bennet had been working with
mature Agile teams for a long time, and those teams
had been adhering to established Agile practices. In his
mind he was doing everything right, so he reasonably
believed that predictability would inevitably follow. Yet
he constantly struggled to accurately answer the most
important questions that his customers were asking.

To illustrate why Bennet struggled (and why you
probably struggle as well), I would like you to look
through the following set of questions and see if one
or more apply to your current situation: - Are you con-
stantly asked to start new work before you have had a
chance to finish old work? - Are you constantly asked
to expedite new requests in addition to being expected
to get all of your other current work done according
to original estimates and commitments? - How many
features do you start but do not finish because they get
cancelled while you are working on them? How likely
is it that the new items that replace the cancelled work
will themselves get cancelled? - When something that
you are working on gets blocked (for whatever reason),
do you simply put that blocked work aside and start to
work on something new? - Do your estimates give con-
sideration to how many other items will be in progress
at the time you start work? - Do you ignore the order
in which you work on items currently in progress? -

Chapter 1 - Flow, Flow Metrics, and Predictability 11

Do you constantly add new scope or acceptance criteria
to items in progress because it is easier to modify an
existing feature rather than to open a new one? - When
an item takes too long to complete, have you ever said or
heard someone say “it is just bigger than we thought it
was” and/or “it will get done when it gets done”? - When
things take too long to complete, is management’s first
response always to have the team work overtime?

I could list many more, but the point is that these be-
haviors are symptomatic of something seriously wrong
with your process. Regrettably, your chosenprojectman-
agement framework (including any Agile methodology
you may be using) may be perpetuating the underlying
illness. When it comes to unpredictability, the thing that
really ails you is a lack of flow.

Flow and the Basic Metrics of Flow

Simply stated, flow is the movement and delivery of
customer value through a process. In knowledge work,
our whole reason for existence is to deliver value to the
customer. Therefore, it stands to reason that our whole
process should be oriented around optimizing flow.

If your process is unpredictable, the first thing to
investigate is poor flow. A telltale sign of a suboptimal
flow is a large buildup of work somewhere in your
process. This buildup of work is most commonly called
a “queue”. Large queues generally mean no flow.

Queues formwhenwork items that havebeen started
just get stuck somewhere in your process (without com-
pleting). Items may get stuck because: - There are no
more resources available to continueworking on them. -
Somemanagermandates thatmorenewworkbe started
before current work has finished. - Resources that are

Chapter 1 - Flow, Flow Metrics, and Predictability 12

actually doing the work are constantly pulled in multi-
ple different directions and are not allowed to focus on
any one thing. - There is a dependency on some external
team or vendor.

Work may get stuck for all of those reasons and
more. Management of flow, therefore, usually begins by
attempting to “unstick” stuck work.

Unfortunately, your projectmanagement framework
makes you blind to queues. You are blind to them be-
cause you are never asked to look for them in the first
place. If you are doing some sort of Agile, then youmight
assume that iterations or sprints insulate you from large
queues. However, if you answered “yes” to any of the
questions I asked above, then there is a good chance
you have a large buildup of work somewhere in your
process.

Even though you do not see these large queues, you
are constantly feeling their effect. The most obvious ef-
fect that you feel is that work takes too long to complete.
Traditional project management responses to elongated
completion timesmight be to constantly refigure project
plans, to continuously revisit resource assignments, and
to force teams to work overtime. Not only do those
actions not solve the core problem, but inmost instances
they tend to make things worse.

But what if we could see these problems before they
happen? What if we could take action to prevent them
from happening in the first place? That is where action-
able metrics come in.

Actionable Metrics for Predictability

The best way to fix the problem of large queues is not to
allow them to form in the first place. To do that wemust

Chapter 1 - Flow, Flow Metrics, and Predictability 13

somehowmeasure our queues. The bestway tomeasure
a queue is to simply count the number of items you are
working on at any given time. When that number gets
too big then no new work gets started until something
old has finished. The total count of items currently being
worked on is the flowmetric commonly known asWork
In Progress.

As I just mentioned, the direct consequence of large
buildup of work is that all of that queued work itself
takes longer to complete. The flow metric that repre-
sents how long it takes for work to complete is called
Cycle Time. Cycle Time ultimately answers the question
of “When will it be done?” A process with elongated
Cycle Times makes it harder to answer that question.

The direct consequence of elongated Cycle Times is a
decrease in Throughput. Throughput is the metric that
represents howmuchwork completes per unit of time. A
decrease in Throughput therefore means that less work
is getting done. The less work that gets done, the less
value we deliver.

To manage flow we are going to need to closely
monitor those three metrics:

1. Work In Progress (the number of items that we
are working on at any given time),

2. Cycle Time (how long it takes each of those items
to get through our process), and

3. Throughput (how many of those items complete
per unit of time).

The rest of this book will explain that if your process
is not predictable, or is veering away frompredictability,
thesemetricswill suggest specific interventions that you
can make to get back on track. In a word, these metrics
are actionable.

Chapter 1 - Flow, Flow Metrics, and Predictability 14

ActionableMetrics for Predictability: The set
ofmetrics thatwill suggest specific interven-
tions that will result in the outcomes you are
expecting.

Once we know what metrics to track, we can visual-
ize those metrics in flow-based analytics. These analyt-
ics will bring visibility to any problems with flow much
more quickly so that we can proactively deal with issues
rather than retroactively fight fires.

Items taking too long? Not enough getting done?
These metrics and analytics will give us some of the
magic levers we can pull to make things better.

Why These Metrics

In addition to being actionable, there are certain other
criteria that must bemet when deciding what metrics to
capture. Eric Reis, of Lean Startup fame, gives one per-
spective: “The only metrics that entrepreneurs should
invest in are those that help them make decisions.”
Well said. Troy Magennis, of Lean Forecasting fame,
goes even further: “If a metric does not offer predictive
power, then capturing that metric is waste.” I discussed
earlier how the important questions that our customers
ask are going to require us to make predictions. I have
further suggested that these flowmetrics in and of them-
selves are the answers to those questions. By definition,
then, tracking these metrics offer predictive power and
will help us make better decisions.

Yet another vital criterion exists that should be con-
sideredwhendeterminingwhatmetrics to capture: cost.
There is no point in tracking a metric if it is going to
bankrupt you to do so.Herein lies yet another advantage

Chapter 1 - Flow, Flow Metrics, and Predictability 15

of tracking these metrics of flow: these metrics are very
inexpensive to gather. Any Agile tool should track these
metrics (how easy it is to mine this data from a given
tool and how accurately those tools display the analytics
is a different story that we will get to in Chapter 16).
Even if you do not have an Agile tool, these metrics are
very easy to manually track using a simple spreadsheet.
WIP, Cycle Time, and Throughput take very little time
to collect, and offer the biggest bang for the buck in
terms of gaining precious insight into the overall health,
performance, and predictability of your process.

Why Not Traditional Agile Metrics?

For the most part, the types of actionable metrics and
analytics to be discussed in this book do not exist in
traditional Agile guidance and traditional methodolo-
gies. They do not exist because, as I discussed earlier,
most of those earlier methodologies were not designed
from the premise thatmanaging flow is the best strategy
for predictability. Further, traditional Agile metrics and
analytics give no visibility nor any suggestion of what to
dowhen things gowrong. “WorkHarder”, “Estimate Bet-
ter”, “Plan Better”, “Hope”, “Pray”, “Cry” are not viable
nor sustainable strategies.

Adding to this problem is that all of the tooling that
has been developed around these legacy Agile metrics
provide incorrect or incomplete information. In the ab-
sence of a tool to do it for them, a team’s only option is to
manually track flow metrics and build the correspond-
ing analytics themselves. However, most teams do not
want to invest in manually collecting new types of data
when they have already made an investment in their
current toolset. Therefore these metrics never get col-

Chapter 1 - Flow, Flow Metrics, and Predictability 16

lected and the proper analytics never get built. Because
of these points, even when presented with the correct
metrics, most teams do not know how to interpret or
take action on them.

What Makes these Metrics Lean and
Agile?

To begin with a counterexample, it is incomprehensible
to me that metrics like Story Points and Velocity are
accepted as Agile. I am being purposefully provocative
here, but those metrics—and the corresponding analyt-
ics like Burn Down charts—are about as far from Agile
as one can get. Let’s explore why for a second.

Part of the Agile Manifesto mentions “Customer Col-
laboration”. I fully support that notion that our work
should involve close collaboration with the customer.
However, to me, collaboration means speaking the lan-
guage of the customer. And that language should extend
to cover all the metrics and analytics that we use. Have
you ever had to explain what a Story Point is to a cus-
tomer? How about Velocity? If you do not like yourself
very much, march into your CFO’s office someday and
try to explain what a Story Point is.

However, I guarantee all of your stakeholders un-
derstand the concept of elapsed time. I guarantee they
understand the concept of the total number of features
to be delivered in a release. If we truly want to be
Agile, we are going to have to adopt the language of
our customers. To that end, we must choose words and
concepts that they are comfortablewith—not force them
to learn a new, arbitrary, and unhelpful vocabulary.

Additionally, one of the key tenants of Lean is re-
spect for people. To demonstrate why flow and flow

Chapter 1 - Flow, Flow Metrics, and Predictability 17

metrics are Lean, I would like you to try the following
experiment at home sometime (if you have a spouse or
partner). I have a wife so I will explain it with her in
mind. In this experiment, I would start by asking my
wife to do something for me. The particular task I ask
her to do does not really matter as long as it will take
a non-trivial amount of time to complete. Before she is
finished I will ask her to stop what she is working on
to do something else for me. Before she is finished with
that new task, I will ask her to stop and do something
else. At some point after I have requested her to do the
third or fourth thing Iwill ask herwhy she is not finished
with the first thing I requested and why it is taking so
long. I will continue to do this until the nearest blunt
instrument she beats me to death with is marked as
“Prosecution’s Exhibit A”.

The Solution to Poor Predictability

Today’s economic climate has caused a heated competi-
tion for companies to acquire customers, retain them,
and deliver the products they want when they want
them.

You know this all toowell because you bear the brunt
of this heated competition; because you are expected
to create, manage, and maintain the products that cus-
tomers desire; because you are expected to reduce the
time and resources needed to launch products quickly
to meet ever-changing customer demands.

Solving these problems will require a new strategy.
That new strategy is to focus on the management of
flow. A focus on flow necessitates not only a shift in
thinking (away from capacity utilization and estimation
and planning) but also a shift in the quantities used to

Chapter 1 - Flow, Flow Metrics, and Predictability 18

evaluate process performance (away from ideal hours,
level of effort, points, velocity, etc.)

That is where the metrics of flow come in. Observing
and measuring flow is going to provide the missing
component that you need to make your process more
predictable. If you can get to a process that has sta-
ble, predictable flow, then the act of estimating and
planning—the act of making predictions—becomes triv-
ial. The measurement of flow and its resultant metrics
will take care of all that for us.

I began this chapter by talking about Bennet’s pre-
dictability problems at HS. In the months that followed
our first meeting in Philadelphia, I had the great op-
portunity to work with Bennet and to reflect with him
on the relationship between flow and predictability.
During one of those conversations, Bennet said, “You
know, most people think of predictability as a noun.
It’s not. It’s a verb.” Exactly right. It is not that you
are predictable or are not predictable. It is that you
“do” predictability. Predictability is proactive and not
reactive. The actions you take today have the biggest
impact on your predictability tomorrow.

Key Learnings and Takeaways

• To get more predictable in knowledge work, we
must abandon old project management paradigms
and adopt new ones. The new paradigm we must
adopt is the focus on and the management of flow.

• A lack of flow manifests itself as a buildup of work
(large queues of work). The best way to fix the
problem of large queues is not to allow them to
form in the first place.

• Managing for flow necessitates a new, different

Chapter 1 - Flow, Flow Metrics, and Predictability 19

set ofmetrics than traditional projectmanagement
frameworks would ever prescribe or suggest.

• Observing andmeasuring themetrics of flow is the
true path to predictability.

• Flow metrics are defined in the language of the
customer and are the proper metrics to track in
order to be lean and agile.

• Flow metrics will suggest the actionable interven-
tions needed to make us more predictable.

Chapter 2 - The Basic
Metrics of Flow
As I discussed in the previous chapter, understanding
flow and managing for it requires a different paradigm
than that espoused by traditional processes and frame-
works. The answers to the essential questions of pre-
dictable process execution arenot found inproject plans,
resource utilization charts, or teammembers’ estimates.
The answers will come from the monitoring, measure-
ment, and management of a specific set of metrics. This
chapter is all about defining these metrics: Work In
Progress (WIP), Cycle Time, and Throughput.

The good news is that these flow metrics are ex-
actly the ones we need to track in order to answer the
questions that our customers are asking. The customer
question “How long to complete?” is best answered by
the flow metric known as Cycle Time. The customer
question “How many new features am I going to get
in the next release?” is a question best answered by
the flow metric known as Throughput. The last of the
three, Work In Progress (WIP), does not directly answer
any particular customer question, but it is the metric
that will most greatly influence the other two. For that
reason, I will start this discussion with it.

Work In Progress

Work In Progress is the most important flow metric to
track for two reasons. First, as we will see in the coming
chapters, WIP is the best predictor of overall system

20

Chapter 2 - The Basic Metrics of Flow 21

performance. Second, the other two metrics of flow—
Cycle Time and Throughput—will themselves both be
defined in terms of WIP.

Even so,WIP is probably the hardestmetric to define.
That is because the definition ofWIP is two dimensional:
it must cover both the notion of “work” and the notion
of “in progress”.

Let’s look at the idea of work first. For the purposes
of this book, I regard any direct or indirect discrete unit
of customer value as a candidate for work. The generic
term I will use for these candidate units of customer
value is “work item”. A work itemmight be a user story,
an epic, a feature, or a project. Itmight be a requirement,
use case, or enhancement. How you capture work as
work items and how name your work items is entirely
up to you.

Secondly, to define in progresswemust first consider
the boundaries of your process. To do so, let’s use the
metaphor of a simple queuing system. I would argue
that all processes can be modelled in the manner de-
picted in Figure 2.1:

Figure 2.1: A Simple Queuing System

In a queuing system there is work that arrives to a
process and there is work that departs a process. When
making a determination ofwhether something counts as
in progress or not, the first aspect of system that needs
to be considered is what does it mean for something to
have “arrived”? That is to say, your team needs to define
a specific point where a unit of work transforms from
being just some arbitrary idea into being a legitimate

Chapter 2 - The Basic Metrics of Flow 22

work item that is to immediately be acted on and com-
pleted. Before that arrival point, the item is just some
candidate for work. After that arrival point, the item is
counted as Work In Progress.

In a pull-based system, an entry (or boundary) point
is fairly easy to define. That is because in a pull
system, a team only starts work when it has capac-
ity to do so. Thus, a work item can only count as
Work In Progress if it has been voluntarily pulled
into the process by the individual, team, or organi-
zation responsible for operating that process. The
“arrival point” of the system, therefore, is the point
at which the team performs its first pull transaction
on the work. After that first pull transaction, an
item is considered WIP until it departs the process.
(This arrival point is also considered a point of
“commitment”. An in-depth look at how just-in-time
commitment and just-in-time prioritization work
are topics that I will cover in Chapter 8).

For push-based systems, an entry point is much
harder to define. That is because there is no consid-
eration for a team’s capacity when deciding when
work should be started. In a push system work
can be considered started when any stakeholder
has a reasonable expectation that work has been
committed to (whether the team responsible for
performing the work knows about it or agrees to it
or not). This expectation could be set for such arbi-
trary reasons as the work has been requested, the
project has been funded, or some manager some-
where thinks it is a good idea to start—regardless
of whether there is any capacity to do so.

Obviously I have a bias for pull systems over push
systems, but the concept of WIP applies regardless

Chapter 2 - The Basic Metrics of Flow 23

of context. If you find yourself operating within
a push system, then the best, first predictability
exercise you might want to undertake is to define
the boundaries around your process. Getting a han-
dle on what you consider WIP is a necessary (but
unfortunately not sufficient) step down the road to
predictability.

For a work item to no longer count as in progress,
there must be a specific point of departure from the
process. Departure could be defined as delivery to an
actual end user or delivery to some other downstream
team or process. For example, if a development team is
responsible for its own deployments to production, then
that teammight consider an item only to have departed
once a deployment to production has been made. Or a
different team who is not responsible for deployments
might consider an item to only have departed once it has
been reasonably handed off to a downstreamoperations
team who would then handle deployments. Again, the
definition of a point of departure holds truewhether you
are operating a pull or a push system.

To sum up, for in progress definition purposes your
team must define a specific point when it considers
work to have arrived to the process and it must define a
specific point wherework has departed the process. The
definition of those two system boundaries is the crucial
starting point in predictable process design. Once you
havemade those decisions, then all work items between
those two points will count as Work In Progress:

WIP: All discrete units of customer value
that have entered a given process but have
not exited.

Chapter 2 - The Basic Metrics of Flow 24

If defining WIP is the hard part, then measuring
it is the easy part. To calculate WIP you simply count
the discrete number of work items within your process
boundaries as defined above. That’s it: just count.

Your natural objection might be, “doesn’t that mean
you have to make all of your work items the same size?”
After all, thework items that come through your process
are of different durations, are of disparate complexities,
and may require a wide mix of resources to work on
them. How can you possibly account for all of that
variability and come up with a predictable system by
just counting work items? While that is a reasonable
question, it is not something to get hung up on.

I will spend more time on this topic a little bit later,
so I am going to ask you to just suspend disbelief here
and accept that when it comes toWIP and predictability,
there is no requirement to have all of your work items
be of the same size or complexity. There is not going
to be need for any further complexity to be added to
the calculation such as estimating your WIP in Story
Points or assigning ideal hours to each work item. This
concept is probably very uncomfortable to those of you
who are used to thinking aboutwork in terms of relative
complexity or level of effort. As I mentioned in the
introduction, you need to abandon that type of thinking
if you truly want to build predictable processes.

For those of you who do not want to wait, an expla-
nation of why size does not matter (said the actress to
the bishop) will be given in Chapter 3 (the chapter on
Little’s Law). For now, all you need to know is that WIP
is calculated by counting individual work items.

Nor is there any restriction on the level at which you
track work items. You can track WIP at the portfolio,
project, feature, epic, or story level—just to name a few.
All of these types of decisions will be completely up to

Chapter 2 - The Basic Metrics of Flow 25

you.
For you Kanban practitioners out there, you will also

want to note that there is a difference betweenWIP and
WIP limits. You cannot calculate WIP simply by adding
up all the WIP limits on your board. It should work that
way, but it does not. This result should be obvious as
most Kanban boards do not always have columns that
are at their full WIP limit. A more common situation
is to have a Kanban board with WIP limit violations
in multiple columns. In either of those cases simply
adding up WIP limits will not give you an accurate WIP
calculation. Even in a Kanban world, you still have to
actively track the total number of work items in your
process.

An implication of all of this is that most often items
located in a backlog do not meet the definition of being
included in a WIP calculation. There is a subtlety here
that is going to require further discussion as it refers
to the “point of commitment” that I mentioned a little
earlier (for this deeper discussion, please see Chapter
8). Just know that—for themost part—when I talk about
WIP, I do not include backlog items in that discussion.

As an interesting aside, you should know that you
will have the option to segment and report on your WIP
as you see fit. In some contexts it may be beneficial to
lump all of your WIP together and examine it from a
holistic system’s view. Or itmay be beneficial to segment
that WIP into types or categories and examine each one
of those subgroups on its own.

For example, let’s say your team performs work for
the sales department, the marketing department, and
the finance department. Let’s also say that your team is
responsible for maintenance on a variety of existing ap-
plications. When looking at WIP you may want to com-
bine all of those requests together into one big group.

Chapter 2 - The Basic Metrics of Flow 26

Or your teammay choose to just look at the part of your
WIP that pertains to sales. Or your team may choose to
look at the part of your WIP that pertains to marketing.
Or you may just want to look at how your maintenance
items are doing. Fromametrics perspective, performing
that type segmentation is not only going to be perfectly
okay, but also, as mentioned earlier, in some instances
is going to be desirable. If your team does segment
WIP into different categories, then it is also going to be
valid to talk about the Cycle Time and Throughput of
those different type segments. Segmenting (or filtering)
WIP into different types may also be important from a
reporting and analytics perspective which is why I will
revisit this topic in the flow analytics chapters to come
(Chapter 5 and Chapter 10).

Not only are the other two metrics of flow defined in
terms ofWIP, but—it turns out—those other two are also
best predicted by WIP. This result is so important that
I am going to dedicate much of the following chapters
to it. My point here is only to suggest that if your team
ever wants to have any hope of operating a predictable
process, then you are going to have to get control ofWIP.
If you are not currently trackingWIP, then you are going
to want to start. Sooner is better than later.

Cycle Time

As I mentioned in Chapter 1, the first question our cus-
tomers ask when we start work for them is “When will
it be done?” Answering that question will require us to
measure the flowmetric of Cycle Time. Measuring Cycle
Time becomes much easier now that you have a basic
understanding of WIP.

In the previous section I stated that a process has

Chapter 2 - The Basic Metrics of Flow 27

specific arrival and departure boundaries and that any
item of customer value between those two boundaries
can reasonably be counted as WIP. Once your team
determines the points of delineation that define Work
In Progress, the definition of Cycle Time becomes very
easy:

Cycle Time: The amount of elapsed time that
a work item spends as Work In Progress.

This definition is based on one offered by Hopp and
Spearman in their Factory Physics book and, I believe,
holds up well in most knowledge work contexts. Defin-
ing Cycle Time in terms of WIP removes much—if not
all—of the arbitrariness of some of the other explana-
tions of Cycle Time that you may have seen (and been
confused by) and gives us a tighter definition to start
measuring this metric. The moral of this story is: you es-
sentially have control over when something is counted
as Work In Progress in your process. Take some time to
define those policies around what it means for an item
to be “Work In Progress” in your system and start and
stop your Cycle Time clock accordingly.

Not only does defining Cycle Time in terms of Work
In Progress make it more concrete and easier for people
to understand, but it also brings some needed consis-
tency when talking about Cycle Time with respect to
Little’s Law (Chapter 3) and with respect to how Cycle
Time is (or is not!) visualized on a Cumulative Flow
Diagram (Chapter 5).

Lastly, notice the emphasis on “elapsed time”. The
use of elapsed time is probably very different from the
guidance you have previously been given. Most other
methodologies ask you tomeasure only the actual amount

Chapter 2 - The Basic Metrics of Flow 28

of time spent actively working on a given item (if they
ask you to measure time at all). I happen to think this
guidance is wrong. I have a couple of reasons why.

First, and most importantly, your customers proba-
bly think about the world in terms of elapsed time. For
example, let’s say that on March 1, you communicate
to your customers that something will be done in 30
days. My guess would be that your customer’s expec-
tation would be that they would get their item on or
before March 31. However, if you meant 30 “business
days” then your expectation is the customer would get
something sometime around the middle of April. I am
sure you can see where that difference in expectations
might be a problem.

Second, if you only measure active time, you are
ignoring a large part of your predictability problem.
It is the time that an item spends waiting or delayed
(i.e., not actively being worked) that is usually where
most of your unpredictability lies. It is precisely that
area that we are going to look at for most substantial
predictability improvements. Remember, delay is the
enemy of flow!

Lead Time vs. Cycle Time
If you have been exposed to Lean or Kanban con-
cepts before reading this book, then what I have
just defined as Cycle Timemay sound a lot likewhat
you have come to recognize as Lead Time. I under-
stand that most people in the Kanban community
prefer the term Lead Time to Cycle Time, but I am
not one of them. My intention here is not to dive
headlong into an academic (and ultimately useless)
debate about which nomenclature is better, but

Chapter 2 - The Basic Metrics of Flow 29

I feel that I should at least present my thoughts
on why I have chosen the terms that I have. You
may agree or disagree with my reasoning, but I
hope you understand my intention here is not to
be provocative or antagonistic (yet). I am going to
talk about nomenclature in general a little later, but
these specific terms require some special attention.

Sowhy choose the termCycle Time over Lead Time?
My first argument is that regardless of whether
you are talking about Cycle Time or Lead Time,
you still have to qualify the boundaries of your
time calculation. That is to say, both terms are very
dependent on one’s perspective: one person’s Lead
Time is another person’s Cycle Time and vice versa.
For example, the development team’s Lead Time
is just the Product Manager’s Cycle Time through
the development phase. While it is true that Lead
Time gives more of a sense of an end-to-end cal-
culation, what “end-to-end” means must still be
defined for any given context. Given that in both
cases boundaries must be qualified, I see no clear
advantage of the term Lead Time over the term
Cycle Time. Further, defining Cycle Time in terms
of when something is counted as WIP clears up a
lot of this ambiguity.

Secondly, I do not buy the argument that we, the
Lean-Agile community, should shy away fromusing
the term Cycle Time because the manufacturing
industry has already defined it in a different way
that may or may not be in agreement with how we
use the name. I do not subscribe to the thinking
that the “Lean” we are talking about here is just
manufacturing theory wholly and blindly applied
to knowledgework. I fully reject this thesis. The fact
that manufacturing has its own definition of Cycle
Time should be neither influential nor consequen-
tial to how we in knowledge work choose to define

Chapter 2 - The Basic Metrics of Flow 30

the term.

Lastly, and, I must stress, most importantly, the
authors that I quote most—Reinertsen and Little—
both favor the use of the term Cycle Time. If it is
good enough for them, then it is good enough for
me.

By the way, Hopp and Spearman also sometimes
refer to Cycle Time as “Flow Time”. I would suggest
that the term “Flow Time”might be a better way for
us to communicate what we really mean by Cycle
Time in our context anyway. Even so, for the rest of
the book, I will use the more common term, Cycle
Time, and I will use it in the way that I have defined
it here.

As I will show you in the chapter on Forecasting
(Chapter 14), Cycle Time is going to be one of the main
metrics you will need to come up with an accurate fore-
cast for a project’s (or story’s or feature’s) completion.
That is to say, the reason that you want to track Cycle
Time is because it provides the answer to the question,
“When will it be done?” While that is certainly true,
there are other important reasons to track Cycle Time.

The first supporting reason is that Cycle Time can be
a rather good predictor of cost. Very generally speaking,
the longer something takes to complete the more it is
going to cost. Project, feature, or even user story cost
can be one of the biggest determiners of whether a
company chooses to invest in development or not. Like
it or not, we are going to need Cycle Time data to figure
out development cost.

There is still a more important reason to understand
Cycle Time. Cycle Time represents the amount of time it

Chapter 2 - The Basic Metrics of Flow 31

takes to get customer feedback. Customer feedback is of
vital importance in our knowledge work world. Value
itself is ultimately determined by the customer, which
means your team is going to want to make sure it gets
that value feedback as quickly as possible. The last thing
you want is to develop something that the customer
does not need—especially if it takes you forever to do
so. Shortening Cycle Time will shorten the customer
feedback loop. And to shorten Cycle Time, you are going
to first need to measure it.

A final reason to monitor Cycle Time is that it can
give you an overall picture of your process’s health. The
diagnostic tool needed for that is something called Flow
Efficiency. Simply put, Flow Efficiency is the ratio of
the total elapsed time that an item was actively worked
on to the total elapsed time that it took for an item to
complete (its total Cycle Time). There’s a subtlety in this
definition that bears some explanation. As an item is
flowing through a process it is in either one of two states.
It is either being actively worked on or it is not being ac-
tivelyworked on. Examples of an itemnot being actively
worked on is it is blocked by some external dependency
(team, vendor, etc.), or it is queuingwaiting to be pulled.
In both of those examples, an item is accumulating Cycle
Time but no one is actively working on it. To get Flow
Efficiency, you take the Total Cycle Time, subtract out
inactive time and then divide that result by the Total
Cycle Time.

It is not uncommon for teams just starting out with
managing for flow to have Flow Efficiencies in the 15%
range. Think about that for a second. If a user story
took 20 days to complete and had a Flow Efficiency
of 15% that means that it spent only 3 days having
someone activelywork on it and it spent 17 days in some
type of inactive state. If a user story took only 3 active

Chapter 2 - The Basic Metrics of Flow 32

days of work yet had 17 days of inactivity built into its
Cycle Time, where do you think you should focus your
process improvement activities? It is probably going to
be very hard to improve on that 3 days of active time,
but my guess there are tons of opportunities to get that
17 day number down. Any reduction of inactive time
will by definition improve overall Cycle Time. Looking
at wait time is usually the best, easiest, cheapest area to
investigate first for process improvement.

Throughput

I have saved the easiest metric to define for last. Simply
put, Throughput is defined as:

Throughput: the amount of WIP (number of
work items) completed per unit of time.

Stated a slightly different way, Throughput is a mea-
sure of how fast items depart a process. The unit of time
that your team chooses for your Throughput measure-
ment is completely up to you. Your team can choose to
measure the number of items that it gets done per day,
perweek, per iteration, etc. For example, youmight state
that the Throughput of your system as “three stories per
day” (for a given day) or “five features per month” (for
a given month).

A further thing to know about Throughput, however,
is that this metric as I have defined it here is very dif-
ferent from the Scrum metric of “Velocity”. Velocity, as
you may know, is measured in terms of Story Points per
sprint or iteration. You have to remember, though, that
for Throughput I am talking about actual counts of work
items (e.g., actual number of discrete stories and not

Chapter 2 - The Basic Metrics of Flow 33

Story Points) per unit of time. As I have just mentioned,
the unit of time you choose for Throughput is completely
up to you. The implication being that your choice of
a time period need not necessarily coincide with an
iteration boundary. I say all of this because many agile
coaches and consultants use the words “Velocity” and
“Throughput” interchangeably. Just know that these two
terms are definitely not synonymous.

If Throughput is how fast items depart from a pro-
cess, then Arrival Rate is how fast items arrive to a
process. I mention this fact here because depending
on your perspective, Arrival Rate can be thought of as
an analog to Throughput. For example, let’s say that
the “Development” step and “Test” step are adjacent in
your workflow. Then the Throughput from the “Devel-
opment” step could also be thought of as the Arrival Rate
to the “Test” step.

Even more importantly, though, comparing the Ar-
rival Rate of one step in your process to the Throughput
in another, different step may give you some much
needed insight into predictability problems. I will be
going into much more detail about this comparison in
the coming chapters. However, my more immediate
reason in discussing Arrival Rate is simply to point out
that how fast things arrive to your process could be just
as important as how fast things depart.

The Throughput metric answers the very important
question of “How many features am I going to get in
the next release?” At some point you are going to need
to answer that question, so track Throughput and be
prepared.

As with the other metrics, though, the most obvious
reason to track a metric is not necessarily the best rea-
son to do so. While I am on record as being skeptical of
applying the Theory of Constraints (ToC) to knowledge

Chapter 2 - The Basic Metrics of Flow 34

work, I will acknowledge that understanding Through-
put at each step of your process will help you to identify
the constraints in your workflow (assuming variability
has been taken into account—but more on that later).
Understanding what the constraints are and where they
are will assist you in trying to determine (among other
things) the best places to look for overall process im-
provement. Does your team require more staff? What
type of staff do you need? Should you introduce some
type of automation? These are all examples of questions
that can only be answered by understanding and track-
ing Throughput.

Conclusion

What I have shown here are just the basic metrics of
flow to get you started: WIP, Cycle Time, and Through-
put. There aremost certainly other metrics that you will
want to track in your own environment, but these rep-
resent themetrics common to all flow implementations.
If your goal is predictability, then these are the metrics
that you are going to want to track.

I would also like to say one final word on vocabulary.
No doubt if you have done any reading on this topic that
you have come across different names for the concepts
that I have defined in this chapter (I discussed the most
contentious example of this in the “Lead Time vs. Cycle
Time” section above). As I mentioned earlier, the point
of this discussion is not to spark any religious wars over
nomenclature. I am in no way trying to suggest that the
names that I use here are the only correct ones. The
point of this chapter is only to get you thinking about the
basic concepts that are communicated by these metrics.

For example, for us to have a conversation about

Chapter 2 - The Basic Metrics of Flow 35

predictability, we are first going to need some notion of
the total amount of items in a system. I am choosing to
call that notionWork In Progress. If you prefer the term
Work in Process or something else, then by all means
use that name.We are also going to need some notion of
the amount of time that items spend in the system. I am
choosing to call that Cycle Time. If you prefer Lead Time,
Flow Time, Time In Process, or something else, then,
please do not let me stand in your way. Lastly, we need
somenotion of the amount of items that leave the system
per unit of time. I am choosing to call that Throughput.
But please feel free to use the terms Completion Rate,
Departure Rate, or anything else that you may make
you comfortable (so long as you do not use the term
Velocity!).

Just know that it is the definitions of these concepts
that are important—not thenames.However, to be clear,
the rest of this book will utilize the names and defini-
tions of these metrics as I have outlined in this chapter.

Lastly, one of the fundamental hypotheses of this
chapter is that all processes can be modeled as queuing
systems. When thinking about your process in this way,
you are able to bring to bear the real reason why it is
so crucial to track WIP, Cycle Time, and Throughput.
This real reason is because these flow metrics are in-
extricably linked by a fundamental and powerful bond.
Understanding this connection is going to be the key to
building and operating a predictable process. An explo-
ration of this link iswhere Iwill go next inmy discussion
of actionable metrics.

The name of this remarkable relationship, by the
way, is Little’s Law.

Chapter 2 - The Basic Metrics of Flow 36

Key Learnings and Takeaways

• Any work item can be counted as WIP when it is
between the defined entry point of a process and
the defined exit point of a process.

• The choice of what work items you count as WIP
when between those two points is completely up
to you.

• WIP can be segmented into several different types.
• If WIP is segmented into several types, then it is
also valid to talk about the Cycle TimeandThrough-
put of those type segments.

• Cycle Time and Throughput are always defined in
terms of WIP.

• Cycle Time is the amount of elapsed time that an
item spends as Work In Progress.

• Throughput is the amount of Work In Progress
completed during some arbitrary interval of time.

• The names of metrics are not as important as their
definitions. Usewhatever names youwant for these
metrics, butmake sure you define them as they are
defined here.

• Track these metrics because they have predictive
power, are inexpensive to gather, and answer the
important questions that your customers are ask-
ing.

• Track thesemetrics because they form the basis for
Little’s Law.

Chapter 3 - Introduction to
Little’s Law
The previous chapter dealt with the basic metrics of
flow: WIP, Cycle Time, and Throughput. In what may
be one of the most miraculous results in the history of
process analysis, these three metrics are intrinsically
linked by a very straightforward and very powerful
relationship known as Little’s Law:

Average Cycle Time = Average Work In
Progress / Average Throughput

If you have ever seen Little’s Law before, you have
probably seen it in the formof the above equation.What
few Agile practitioners realize, however, is that Little’s
Law was originally stated in a slightly different form:

Average Items In Queue = Average Arrival
Rate * Average Wait Time

This fact is important because different assumptions
need to be satisfied depending on which form of the
law you are using. And understanding the assumptions
behind the equation is the key to understanding the law
itself. Once you understand the assumptions, then you
can use those assumptions as a guide to some process
policies that you can put in place to aid predictability.

The math of Little’s Law is simple. But this chapter
is about how we do not care about the math. What we

37

Chapter 3 - Introduction to Little’s Law 38

do care about—and I cannot stress this point enough
if we want to gain a greater appreciation of the law’s
applicability to our world—is looking far beyond the
elegance of the equation to get a deeper understanding
of the background assumptions needed to make the law
work. That is where things get more complicated, but
it is also where we will find the greatest benefit. A
thorough comprehension of why Little’s Law works the
way it does is going to be the basis for understanding
how the basic metrics of flow can become predictably
actionable.

We Need a Little Help

First, some background.
Dr. John Little spent much of his early career study-

ing queuing systems like Figure 2.1 (the queuing systems
picture from the previous chapter). In fact, one of the
best definitions of such a queuing system comes from
Dr. Little himself: “A queuing system consists of discrete
objects we shall call items, which arrive at some rate to
the system. The items could be cars at a toll booth, people
in a cafeteria line, aircraft on a production line, or in-
structionswaiting to be executed inside a computer. The
stream of arrivals enters the system, joins one or more
queues and eventually receives service, and exits in a
stream of departures. The service might be a taxi ride
(travelers), a bowl of soup (lunch eaters), or auto repair
(car owners). In most cases, service is the bottleneck
that creates the queue, and so we usually have a service
operation with a service time, but this is not required.
In such a case we assume there is nevertheless a waiting
time. Sometimes a distinction is made between number
in queue and total number in queue plus service, the

Chapter 3 - Introduction to Little’s Law 39

latter being called number in system.” The diversity of
domains that he mentions here is extraordinary. While
he does not specifically mention software development
or knowledgework in general, I am going to suggest that
these areas can also be readily modeled in this way.

In 1961, Dr. Little set out to prove what seemed to
be a very general and very common result exhibited by
all queuing systems. The result that he was researching
was a connection between the average Arrival Rate of a
queue, the average number of items in the queue, and
the average amount of time an item spent in the queue
(for the purpose of this chapter, when I say “average” I
am really talking about “arithmetic mean”). Mathemati-
cally, the relationship between these threemetrics looks
like:

Equation (1): L = λ* W

Where:
L = the average number of items in the queuing

system.
λ = the average number of items arriving per unit

time.
W = the average wait time in the system for an item.
Notice that Equation (1) is stated strictly in terms of

a queuing system’s Arrival Rate. This point is going to be
of special interest a little later in this chapter.

Also notice that—if it is not obvious already—Little’s
Law is a relationship of averages. Most knowledge work
applications and discussions of the law neglect this very
important detail. The fact that Little’s Law is based on
averages is not necessarily good or bad. It is only bad
when people to try to apply the law for uses that it was
never intended.

Chapter 3 - Introduction to Little’s Law 40

Dr. Little was the first to provide a rigorous proof
for Equation (1) and, as such, this relationship has since
been known as Little’s Law. According to him, one of
the reasons why the law is so important is the fact that
(emphasis ismine): “L, λ, andWare three quite different
and important measures of effectiveness of system per-
formance, and Little’s Law insists that they must obey
the ‘law.’… Little’s Law locks the three measures together
in a unique and consistent way for any system in which
it applies. Little’s Law will not tell the managers how to
handle trade-offs or provide innovations to improve their
chosen measures, but it lays down a necessary relation.
As such, it provides structure for thinking about any
operation that can be cast as a queue and suggests what
data might be valuable to collect.”

The great advantage of Little’s Law is the overall
simplicity of its calculation. Specifically, if one has any
two of the above three statistics, then one can easily
calculate the third. This result is extremely useful as
there are many situations in many different domains
where the measurement of all three metrics of interest
is difficult, expensive, or even impossible. Little’s Law
shows us that if we canmeasure any two attributes, then
we automatically get the third.

To illustrate this point, Dr. Little used the very simple
example of a wine rack. Let’s say you have a wine
rack that, on average, always has 100 bottles in it. Let’s
further say that you replenish the rack at an average
rate of two bottles per week. Knowing just these two
numbers (and nothing else!) allows us to determine how
long, on average, a givenbottle spends sitting in the rack.
By applying Equation (1), we have L equal to 100 and λ
equal to 2. Plugging those numbers into the formula tells
us that a given wine bottle spends, on average, 50 weeks
in the rack.

Chapter 3 - Introduction to Little’s Law 41

Before we get much further, it is worth exploring
what necessary contextual conditions are required for
the law to hold. When stated in the form of Equation (1)
the only assumption necessary is that the system under
consideration has some guarantee of being in a steady
state. That’s it. Really, that’s it. To illustrate the things we
do not need, notice that we can arrive at the wine rack
result without tracking the specific arrival or departure
dates for each or any individual bottle. We also do not
need to know the specific order that the bottles were
placed in the rack, or the specific order that the bottles
were taken off the rack. We do not need to understand
anything fancy like the underlying probability distribu-
tions of the Arrival and Departure Rates. Interestingly,
we do not even need to track the size of the bottles in
the rack. We could have some small 20cl bottles or some
large 2 litre bottles in addition to the more standard
750ml bottles. The variation in size has no impact on
the basic result. (You should know that, in the interest
of thoroughness, I am in the process of independently
verifying this wine rack result on my own. Rest assured
that no detail has been overlooked in the research of this
book.)

As remarkable as all of this may be, the mathemat-
ics are not really what is important for our purposes
here. What is important is that we acknowledge that
the fundamental relationship exists. Understanding the
inextricable link among these metrics is one of the most
powerful tools at our disposal in terms of predictable
process design.

But before we can get into how Little’s Law can help
us with predictability, it is probably helpful to first state
the relationship in more familiar terms.

Chapter 3 - Introduction to Little’s Law 42

Little’s Law from a Different
Perspective

In the late 1980s (or early 1990s depending onwhomyou
ask) Little’s Lawwasusurpedby theOperationsManage-
ment (OM) community and was changed to emphasize
OM’s focus on Throughput. The OM crowd thus changed
the terms in Little’s Law to reflect their different per-
spective as shown by Equation (2):

Equation (2): Cycle Time = Work In Progress
/ Throughput

Where:

1. Cycle Time (CT) = the average amount of time it
takes for an item to flow through the system.

2. Work In Progress (WIP) = the average total inven-
tory in the system.

3. Throughput (TH) = the average Throughput of the
system.

In the interest of completeness, it is ok to perform the
algebra on Little’s Law so that it takes the different, yet
still valid forms:

Equation (3): TH = WIP / CT

and

Equation (4): WIP = CT * TH

Chapter 3 - Introduction to Little’s Law 43

Where CT, WIP, and TH are defined the same way as
in Equation (2).

Because of its roots in Operations Management, the
LeanandKanbanknowledgework community has adopted
this “Throughput” form of Little’s Law as their own. If
you have seen Little’s Law before, you have almost cer-
tainly seen it in the form of Equation (2)—even though
Equation (2) does not represent the law’s original for-
mat.

The upshot of Little’s Law is that, in general, themore
things that you work on at any given time (on average)
the longer it is going to take for each of those things
to finish (on average). As a case in point, managers
who are ignorant of this law panic when they see that
their Cycle Times are too long and perform the exact
opposite intervention of what they should do: they start
more work. After all, they reason, if things take so long,
then they need to start new items as soon as possible
so that those items finish on time—regardless of what
is currently in progress. The result is that items only
take longer and longer to complete. Thus, managers
feel more and more pressure to start things sooner and
sooner. You can see how this vicious cycle gets started
and perpetuates itself. After studying Little’s Law, you
should realize that if Cycle Times are too long then the
first thing you should consider is lowering WIP. It feels
uncomfortable, but it is true. In order to get stuff done
faster, you need to work on less (again, on average).

What Dr. Little demonstrated is that the three flow
metrics are all essentially three sides of the same coin (if
a coin could have three sides). By changing one of them,
you will almost certainly affect one or both of the other
two. In otherwords, Little’s Law revealswhat levers that
we can pull when undertaking process improvement.
Further, as we are about to see, Little’s Law will sug-

Chapter 3 - Introduction to Little’s Law 44

gest the specific interventions that we should explore
when our process is not performing the way we think
it should.

At the risk of repeating myself, what I am talking
about here is simple, incontrovertiblemathematical fact.
A change in onemetric almost always results in a change
in the others.Most companies that I talk to that complain
of poor predictability are almost always ignorant of the
negative implication of too much WIP on Cycle Time or
Throughput. Ignore this correlation at your own peril.

It is all about the Assumptions

This is all straightforward enough so far, right? Well,
unfortunately, it is not. Remember I said at the outset
that Little’s Law is deceptively simple? Here is where
things get more complicated.

It is easy to see from a purely mathematical perspec-
tive that Equation (1) is logically equivalent to Equation
(2). But it is more important to focus on the difference
between the two. As I mentioned earlier, Equation (1)
is expressly stated in terms of the Arrival Rate to the
systemwhereas Equation (2) is expressly stated in terms
of the Departure Rate from the system. This emphasis
on Throughput in Equation (2) probably seems more
comfortable to us as it reflects the usual perspective of
a knowledge work process. Typically, in our context, we
care about the rate at which we are finishing our work
(even though, as we shall soon see, we should care just
as much about the rate at which we start work). What is
nice to know is that Little’s Law canmorph tomatch this
required perspective.

At first glance, this change may not otherwise seem
all that significant. However, this transformation from

Chapter 3 - Introduction to Little’s Law 45

the perspective of arrivals to the perspective of depar-
tures has a profound impact in terms of how we think
about and apply the law. When we state Little’s Law in
terms of a system’s Throughput then we must also im-
mediately consider what underlying assumptions must
be in place in order for the departure-oriented law to be
valid.

Earlier when I first introduced Equation (1) I had
stated that there was really only one assumption that
needed to be in place for it to work. Well, in the interest
of completeness, technically there were three. For Equa-
tion (1) we need:

1. A steady state (i.e., that the underlying stochastic
processes are stationary)

2. An arbitrarily long period of time under observa-
tion (to guarantee the stationarity of the underly-
ing stochastic processes)

3. That the calculation be performed using consistent
units (e.g., if wait time is stated in days, then Ar-
rival Rate must also be stated in terms of days).

By the way, the point here is to not give you an
advanced degree in statistics or queuing theory. Do not
worry if you do not know what “stochastic” or “station-
ary” means. You do not need to. As I have just said, I
mention these things for completeness only.

When we shift perspective to look at Little’s Law
from the perspective of Throughput rather than from
the perspective of Arrival Rate, however, we also need
to change the assumptions necessary for the law to be
valid. This point is so important, I want to place it in its
own callout:

Chapter 3 - Introduction to Little’s Law 46

Looking at Little’s Law from the perspective
of Throughput rather than from theperspec-
tive of Arrival Rate necessitates a change in
the assumptions required for the law to be
valid.

When applying the Throughput form of Little’s Law
(Equation (2)), there are two basic cases to consider.
Each case is going to require its own assumption to be
valid.

The first case is if the total amount of WIP in our
process is ever allowed to go to zero. If so, then Little’s
Law is exact between any two time instances where
total process WIP is zero. Yes, I did say exact. Further,
only one additional assumption (other than a start and
end with zero WIP) is needed for the law to work in
this case. All we require is that everything that enters
the system eventually exits. No other assumptions about
stable systems or no other assumptions about the length
of the time period. Nothing. Reflect on this result for
second and see if you can think of any circumstance
where you start a time periodwith zeroWIP and end the
time period with zero WIP. Two examples immediately
come to my mind. An ideal software “project” would
start with zero WIP and end with zero WIP. If that is the
case, then at the end of the project, using Little’s Law
we could exactly determine the average of any of the
three basic metrics of flow assuming we collected data
on the other two. Another good example would be any
Scrum sprint. If you are doing canonical Scrum, then,
by definition you start each sprint with zero WIP and
you end each sprint with zero WIP (remember, we are
talking textbook Scrum here—I know practice usually
falls far short of prescription). If so, then just as in the
previous example, you could use Little’s Law to calculate

Chapter 3 - Introduction to Little’s Law 47

an average of any of the three basic metrics of flow
assuming that you have collected the data for the other
two.

Unfortunately, though, most of us do not live in a
world where we ever run out of WIP. Some examples
for this might be: we work on multiple projects at a
time or there is never a clean break between when
one project starts and another finishes, we are forced
to do maintenance requests and production support in
addition to project work, we never finish all the work
that we had started at the beginning of sprints, etc.

Which brings us to the second case: whenWIP never
goes to zero. In this case we have to be much more
careful about the assumptions that are required for a
valid application of Little’s Law.

When WIP never goes to zero, then the assumptions
about our process that are necessary to make Little’s
Law (in the form of Equation (2)) work are:

1. The average input or Arrival Rate (λ) should equal
the average output or Departure Rate (Through-
put).

2. All work that is started will eventually be com-
pleted and exit the system.

3. The amount of WIP should be roughly the same at
the beginning and at the end of the time interval
chosen for the calculation.

4. The average age of the WIP is neither increasing
nor decreasing.

5. Cycle Time, WIP, and Throughput must all be mea-
sured using consistent units.

As a quick aside, even if the assumptions do not hold
for the entire time period under consideration, Little’s
Law can still be used as an estimation. However, the

Chapter 3 - Introduction to Little’s Law 48

“goodness” of the estimation depends on how badly the
assumptions have been violated.

The first two assumptions (#1 and #2) comprise a
notion known as Conservation of Flow. I will spend
a lot of time talking about this principle in Chapter 7
and Chapter 8. The second two assumptions (#3 and #4)
speak to the notion of system stability. I will also spend
a lot of time talking about oneway to recognize unstable
systems in Chapter 9.

The last assumption (#5) is necessary for the math
(and any corresponding analysis) to come out correctly
(you will notice this is the same assumption necessary
when stating the law in terms of arrivals). The necessity
for using consistent units when performing a Little’s
Law calculation should be intuitively obvious, but it is
fairly easy to get tripped up over this.Whenwe say “con-
sistent” units what we are really saying is, for example,
if we are measuring average Cycle Time using the unit
of time “day”, then the average Throughput must be in
the form of the number of items per that same unit of
time (day), and the average WIP must be the average
amount of items for one unit of time (day). As another
example, if you want to measure average Throughput
in terms of items per week (i.e., the unit of time here
is “week”), then average Cycle Time must be stated in
terms of weeks, and average WIP must be the average
for each week. - You might think I am wasting your
time by mentioning this, but you would be surprised
how many teams miss this point (one is immediately
reminded of when NASA slammed an orbiter into the
side of Mars because one team used metric units while
another used English units—moral of the story: do not
do that). For example, I saw one Scrum team that was
measuring their velocity in terms of story points per
sprint (as Scrum teams are wont to do). For their Little’s

Chapter 3 - Introduction to Little’s Law 49

Law calculation, they proceeded to plug in their veloc-
ity number for Throughput, their WIP number as total
number of user stories (actual stories—not story points)
completed in the sprint, and expected to get a Cycle Time
number in days. You can imagine their surprise when
the numbers did not come out quite the way that they
expected.

Assumptions as Process Policies

Understanding these foundational assumptions is ofmon-
umental importance. Despite whatmany people will tell
you, the true power of Little’s Law is not in performing
the mathematical calculation by plugging numbers into
its formula. Even though I have spent so much time on
it already, I want you to forget about the arithmetic. In
truth,most of uswill never need to compute Little’s Law.
As I mentioned in the previous chapter, the three flow
metrics’ data is so easy to capture that you should never
have to compute one of them—just go look at the data!

Rather, the true power of Little’s Law lies in under-
standing the assumptions necessary for the law to work
in the first place. If there are three things that I want you
to have taken away from this conversation about Little’s
Law they are:

1. It is all about the assumptions.
2. It is all about the assumptions.
3. It is all about the assumptions.

Every time you violate an assumption of Little’s Law
your process becomes less predictable. Every time. This
increased unpredictability maymanifest itself as longer
Cycle Times or more process variability or both. Or,
worse still, these violations may not even immediately

Chapter 3 - Introduction to Little’s Law 50

show up in your data. The whole time you are violating
Little’s Law your data may be showing you a rosier
picture of the world than is really occurring. The dan-
ger here is that you may be basing some forecast on
this overly optimistic view—only to find that things are
much worse than they seemed.

Of course, we live in the real world and there are
going to be times when violating these assumptions is
going to be unavoidable or even necessary. But that is
exactly why it is all the more important to understand
the implications when these violations occur. There are
always going to be things that happen to us that are out-
side of our control. However, the last thing we want to
do is compound those uncontrollable events by allowing
bad things to happen that were in our control and could
have easily prevented. Controlwhat you can control and
then try to eliminate or mitigate the things you cannot.

The above principles (especially the first four) are go-
ing to help us do just that.We can use these assumptions
as the basis for some simple policies that will govern
the operation of our process. These policies will serve
to control the things that we can control. These policies
will serve to make our process more predictable.

Based on the assumptions above, some process poli-
cies might include (but certainly would not be limited
to): - We will only start new work at about the same rate
thatwe finish oldwork. -Wewillmake every reasonable
effort to finish all work that is started and minimize
wasted effort due to discarded work items (this will
necessitate some notion of late-binding “commitment”).
- If work becomes blocked we will do everything we can
do unblock that work as expeditiously as possible. - We
will closely monitor our policies around the order in
which we pull items through our system so that some
work items do not sit and age unnecessarily.

Chapter 3 - Introduction to Little’s Law 51

The design of your process is really just the sum of
all the policies you have in place. How well your system
performs or does not perform is directly attributable to
those policies and to how well you adhere or do not
adhere to them. When I talk about designing for pre-
dictability, what I am talking about is giving you some
clues—some insights—into appropriate policies that you
can build into the day to day operation of your process.
These policies will serve to normalize and stabilize your
system in order to give your process the predictability
that you are looking for. It is only from this stable base
that we can even hope to implement real, long-lasting
process improvement.

As my friend and colleague Frank Vega so often likes
to say, “your policies shape your data and your data
shape your policies”. The policies that I have mentioned
here will in no small way influence the data that you
collect off of your process. That is a good thing, by the
way. It is a good thing because that data in and of
itself is potentially going to further suggest where our
process policies are deficient. It is this virtuous cycle that
I am talking about when I say “actionable metrics for
predictability”.

Segmenting WIP

I mentioned in Chapter 2 that it is possible to segment
your WIP into several different types. For example it
might be useful to think of your WIP not as just generic
work items, but categorize it into types like “user sto-
ries”, “production defects”, “maintenance request”, etc.
This is a perfectly valid approach and actually may be
desirable in most circumstances. The good news is that
if you choose to segment your WIP in such a manner

Chapter 3 - Introduction to Little’s Law 52

then Little’s Law will apply to both the overall WIP in
the system as well as to each type or groups of types.

For example, we might want to use Little’s Law to
analyze all work flowing through our system, orwemay
want to use it to just look at our work items that are
of type “user story”. We might want to investigate how
badly our production defects are violating the assump-
tions of the law.Ormaybe it is ourmaintenance requests
grouped together with defects that are the culprit. In
most cases this type of segmentation is very useful and
could provide a more sophisticated approach to analyz-
ing process performance.

For those of you thinking ahead and for those of you
familiarwithKanban systems, youwill notice that I have
purposefully not used the term “Class of Service” here.
Not to spoil the punchline, but, yes, you can use Little’s
Law if you choose to segment your WIP along different
Classes of Service. This tactic has a particular signifi-
cance when it comes to process predictability (spoiler
alert: it is usually bad) which is why I have devoted a
whole chapter (Chapter 13) to Class of Service later.

Kanban Systems

From a WIP perspective, it may seem that running a
Kanban system guarantees Little’s Law’s assumptions
are taken care of. There are several reasons why that
may not be the case:

1. It is possible that changing WIP limits may have
no effect on total average WIP (e.g., decreasing
or increasing a WIP limit after a clear systemic
bottleneck). This may be one reason you do not get
the “forecasted” behavior you might expect from
Little’s Law.

Chapter 3 - Introduction to Little’s Law 53

2. Setting a WIP limit is not necessarily the same as
limiting Work In Progress. I cannot tell you how
many teams I come across that set WIP Limits
but then routinely violate them. And violate them
egregiously.

3. Average WIP over a time period is highly depen-
dent on pull policies in place. E.g., are as many
items as possible pulled in order to satisfy WIP
limits at all times?

The point here is that if you are using a Kanban
system, you cannot just simply add up all theWIP Limits
on your board and think that you have calculated WIP
for your process (as discussed previously in Chapter
2). You are going to have actually track physical WIP.
Fortunately, I am going to show you a very easy way to
do that in the next chapter!

Lastly, most people think that Little’s Law is the sin-
gle greatest reason to implement a Kanban-style Agile
process. While I would not strictly disagree with that
statement, I would offer a better way of stating it. I
would say that Little’s Law is the single greatest reason
to move to a more WIP-limited, pull-based, continuous
flow process. The thing is, once we do that, we can
then start to use Little’s Law as our guide for process
predictability.

Size Does Not Matter

I have one last topic I want to cover before wrapping up.
Notice how in the assumptions for Little’s Law Imade no
mention a requirement for all work items to be of the
same size. That is because no such requirement exists.
Most people assume that an application of Little’s Law
specifically—and limiting WIP in general—necessitates

Chapter 3 - Introduction to Little’s Law 54

that all work items be of the same size. That is simply not
true. The precise reasons why would fill up a chapter in
its own right, so I am going to limit my comments to two
brief points.

First, work items size does not matter because for
Little’s Law we are dealing with relationships among
averages. We do not necessarily care about each item
individually, we care about what all items look like on
average.

Second, andmore importantly, the variability inwork
item size is probably not the variability that is killing
your predictability. Your bigger predictability problems
are usually toomuchWIP, the frequencywithwhich you
violate Little’s Law’s assumptions, etc. Generally those
are easier problems to fix than trying to arbitrarilymake
all work items the same size. Even if you were in a
context where size did matter, it would be more about
right-sizing your work and not same-sizing your work
(but more on that in Chapter 12).

Forecasting

As this is a book about predictability, my guess is that
you were expecting me to say that once you understand
Little’s Law all you need to do is to plug in the numbers
and out will pop the forecasting result that you are
looking for (à la Newton’s F = ma or Einstein’s E=mc2).
However, nothing could be further from the truth.

The first thing that you need to know about Little’s
Law is that it is concerned with looking backward over
a time period that has completed. It is not about looking
forward; that is, is not meant to be used to make deter-
ministic predictions. As Dr. Little himself says about the
law, “This is not all bad. It just says that we are in the

Chapter 3 - Introduction to Little’s Law 55

measurement business, not the forecasting business”.
This point requires a little more discussion as it is

usually where people get hung up. The “law” part of
Little’s Law specifies an exact relationship between av-
erage WIP, average Cycle Time, and average Through-
put, and this “law” part only applies only when you are
looking back over historical data. The law is not about—
andwasnever designed for—making deterministic fore-
casts about the future. For example, let’s assume a team
that historically has had an average WIP of 20 work
items, an average Cycle Time of 5 days, and an average
Throughput of 4 items per day. You cannot say that you
are going to increase average WIP to 40, keep average
Cycle Time constant at 5 days andmagically Throughput
will increase to 8 items per day—even if you add staff
to the keep the WIP to staff ratio the same in the two
instances. You cannot assume that Little’s Lawwillmake
that prediction. It will not. All Little’s Lawwill say is that
an increase in average WIP will result in a change to
one or both of average Cycle Time and average Through-
put. It will further say that those changes will manifest
themselves in ways such that the relationship among all
three metrics will still obey that law. But what it does
not say is that you can deterministically predict what
those changes will be. You have to wait until the end of
the time interval you are interested in and look back to
apply the law.

But that restriction is not fatal. The proper applica-
tion of Little’s Law in our world is to understand the
assumptions of the law and to develop process poli-
cies that match those assumptions. If the process we
operate conforms—or mostly conforms—to all of the
assumptions of the law then we get to a world where
we can start to trust the data that we are collecting
off of our system. It is at this point that our process is

Chapter 3 - Introduction to Little’s Law 56

probabilistically predictable. Once there we can start
to use something like Monte Carlo simulation on our
historical data to make forecasts and, more importantly,
we can have some confidence in the results we get by
using that method.

There are other, more fundamental reasonswhy you
do not want to use Little’s Law to make forecasts. For
one thing, I have hopefully by now beaten home the
point that Little’s Law is a relationship of averages. I
mention this again because even if you could use Little’s
Law as a forecasting tool (which you cannot), youwould
not want to as you would be producing a forecast based
on averages. There are all kinds of reasons why you
should not forecast based on averages—too many to go
into here. It turns out we can do better than averages,
anyway, when collecting metrics data and there are
going to be much better tools at our disposal when we
are ready to do forecasting. Luckily for you, Iwill discuss
some of those tools in Chapter 14 and Chapter 15 (I have
just mentioned one of them in the previous paragraph).

Having said all that, though, there is no reason why
you cannot use the law for quick, back-of-the-envelope
type estimations about the future. Of course you can
do that. I would not, however, make any commitments,
staff hiring or firing decisions, or project cost calcula-
tions based on this type of calculation alone. I would
further say that it is negligent for someone to even
suggest to do so. But this simple computation might be
useful as a quick gut-check to decide if something like a
project is worth any further exploration.

Remember that being predictable is not completely
aboutmaking forecasts. The bigger part of predictability
is operating a system that behaves in a way that we
expect it to. By designing and operating a system that
follows the assumptions set forth by the Little’s Law, we

Chapter 3 - Introduction to Little’s Law 57

will get just that: a process that behaves the way we ex-
pect it to. That means we will have controlled the things
that we can control and that the interventions that we
take to make things better will result in outcomes more
closely aligned with our expectations.

Conclusion

I know I have said it before, but I need to say it again:
Little’s Law is not about understanding the mathemat-
ics of queuing theory. It is about understanding the
assumptions that need to be in place in order for the
law to work. We can use those assumptions as a guide,
or blueprint, or model for our own process policies.
Whenever your process policies are in violation of the
assumptions of Little’s Law then you know that you
have at least diminished—or possibly eliminated—your
chance of being predictable.

As you operate your process think about the times
and reasonswhywork flows in at a faster rate thanwork
flows out. Think about why items age unnecessarily
due to blockages or poor pull policies. Think about why
work is abandoned when only partially complete (and
how you account for that abandonment). Think about
how these occurrences are violating the assumptions
Little’s Law and how they are ultimately affecting your
ability to be predictable. But more importantly, think
about how your understanding of Little’s Law should
result in behavior changes for you and your team.When
violations of Little’s Law occur, it is usually because of
something you did or chose (intentionally or not) not to
do. Remember, you have much more control over your
process than you think you do.

Now that we have an understanding of Little’s Law

Chapter 3 - Introduction to Little’s Law 58

and the basic metrics of flow, it is time to turn our
attention to how these concepts are visualized through
the use of flow analytics. As we are about to see, it is
the quantitative and qualitative interpretation of these
unique analytics that will make our process truly pre-
dictable, and will make the flow metrics truly action-
able.

Key Learnings and Takeaways

• Little’s Law relates the basic metrics of flow in an
elegant, fundamental equation.

• Little’s Law is a relationship of averages.
• Donot get distractedwith themath of Little’s Law—
the significance of the law does not necessarily
come from plugging numbers into the equation.

• When stating it in terms of Equation #2, for con-
texts with continuous WIP, there are five assump-
tions necessary for Little’s Law to work, they are:

– The average input or Arrival Rate (λ) should
equal the averageThroughput (DepartureRate).

– All work that is startedwill eventually be com-
pleted and exit the system.

– The amount of WIP should be roughly the
same at the beginning and at the end of the
time interval chosen for the calculation.

– The average age of the WIP is neither increas-
ing nor decreasing.

– Cycle Time, WIP, and Throughput must all be
measured using consistent units.

• Use these assumptions as a guide for your process
policies. The more you violate these assumptions,
the less chance you have of being predictable.

Chapter 3 - Introduction to Little’s Law 59

• Even if the assumptions do not hold for the entire
time period under consideration, Little’s Law can
still be used as an estimation. However, the “good-
ness” of the estimation depends on how badly the
assumptions have been violated.

• Little’s Law is not for forecasting. To do forecasting
we will need other tools. If someone tells you that
you can forecast with Little’s Law or shows you an
example of how to do it, you have my permission
to slap them (I put that in to see if you were still
reading).

• If you segment your WIP into different types, then
Little’s Law can be applied to each of the different
type segments.

PART TWO - CUMULATIVE
FLOW DIAGRAMS FOR
PREDICTABILITY

60

Chapter 4 - Introduction to
CFDs
Over the next three chapters I will go into a fair amount
of detail about what a Cumulative Flow Diagram (CFD)
is, what information it can provide, and how to interpret
the results. You might be tempted to skip this section
if you believe you are already familiar with CFDs. I
would ask that you do not. I say this because much
of what has been published about CFDs’ application
to knowledge work is at best misleading and at worst
completely wrong. This chapter aims to clear up some
of the prevailing myths andmisconceptions about these
truly incredible charts. In order to clear up these myths,
I need to introduce CFDs much differently than they
are normally presented. My hope is to arm you with
information you need to take full advantage of one of
the most effective analytic tools at your disposal.

What makes a CFD a CFD?

The very first thing to know about Cumulative Flow
Diagrams is that they are all about arrivals and depar-
tures. In fact, when researching this book, the very first
reference that I could find to a CFD appeared in the
1960s and that article actually labeled the chart as a
“Cumulative Arrival and Departures Diagram”. I am not
entirely sure when the name got changed to Cumulative
Flow Diagram. However, as I have demonstrated in the
previous chapters, the concepts of arrivals and depar-
tures are central to the idea of flow, so the name change

61

Chapter 4 - Introduction to CFDs 62

makes perfect sense.
As its name suggests, therefore, a Cumulative Flow

Diagram is an excellentway to visualize the flowofwork
through a process. CFDs are among the least known,
and therefore one of the least understood charts in all
of Agile analytics; yet, they represent one of the most
powerful process performance gauges available to us.
They are a powerful tool for a couple of reasons. First,
these charts offer a concise, coherent visualization of
the three metrics of flow that I introduced in Chapter
2. Second, they offer massive amounts of information at
just a glance, or by just doing some very simple calcula-
tions. Visualizing flow via a CFD gives us both quantita-
tive and qualitative insight into problems—or potential
problems—in our process. Gaining an understanding of
actual process performance is one of the necessary first
steps for introducing overall system predictability.

In order to gain this insight, however, we have to be
very precise in terms howwe define exactly what a CFD
is, and—more importantly—how to construct one. In a
point that I will hammer over and over in this and the
next two chapters, an improperly constructed CFD can
lead to improper conclusions about process problems.
Worse, improperly constructed CFDs can lead to team
or management apathy amid claims that the charts are
just not very useful.

So, without any further ado, let’s get to it.
If you have never seen a Cumulative Flow Diagram

before, then here is your chance:

Chapter 4 - Introduction to CFDs 63

Figure 4.1: A Basic CFD

It may not look like much to you right now, but as
I just mentioned this chart is actually communicating a
lot of information.

To get you oriented with what you are looking at, I
first want to spend some time going over the anatomy
of a CFD. Once you have got that under your belt, then
we can move on to what this graph is actually telling us.

The first thing to note about a CFD is that across the
bottom (the X-axis) is some representation of a progres-
sion of time (usually calendar time). It could be said
that the X-axis represents a timeline for our process. The
tick marks on the X-axis represents our choice of labels
for that timeline. When labeling the X-axis, you can
choose whatever frequency of labels you want. In this
particular CFD, we have chosen to label every month.
However you can choose whatever label is best for your
specific needs. You can choose to label every two weeks,
every month, every day, etc.

A very important point here is that these labels can
be very different than the reporting interval that you
choose to build your CFD. The reporting interval is the

Chapter 4 - Introduction to CFDs 64

frequency that you choose to add data to your chart. Just
as with the labels, your reporting interval is up to you.
You can choose to report on your process data every day,
every week, every month, etc. Just note that whatever
reporting interval that you choosewill change the shape
of your diagram (choosing a different reporting interval
may certainly be the tweak you want to make in order
to get a clearer picture of what’s going on in the CFD).
Further note that the reporting interval and the labels
need not be of the same frequency. On the above graph,
the reporting interval is every day, yet you can see that
we have only labeled the timeline at every month.

Lastly, I should point out that in Figure 4.1 I have
chosen to show the timeline progression from left to
right. This is not a requirement, it is only a preference.
I could have easily shown time progression from right
to left. The vast majority of CFDs that you will come
across (unless your name is Frank), however, will show
the progression of time from left to right. Thus, for the
rest of this chapter (and this book), I will show all CFD
time progressions from left to right. Further, know that
all properties of CFDs that I amabout to describe assume
a CFD with a time progression from left to right.

If across the bottom is a progression of time, then up
the side (the Y-axis) is a cumulative count of items in
the process. To build our CFD, at each reporting interval
we are going to calculate the total number of items at
each step in our process and plot them on our graph
(how to properly “count” items will be explained a little
later in this chapter). Just as with labels and reporting
intervals, you can choose whatever scale you want for
the work item axis. Choosing different scales will cause
the picture to change, but, again, that may just be the
adjustment you need in order to “sharpen” your chart’s
picture.

Chapter 4 - Introduction to CFDs 65

As you plot items at each reporting interval, then
over time “bands” will emerge on your chart. Those
bands will correspond to each of the workflow steps in
your process, as in in Figure 4.2.

Figure 4.2: Anatomy of a CFD

A quick note about what I mean by “bands” on a CFD
versus what I mean by “lines” on a CFD. By “band” I
mean each different colored section on the graph. By
“line” I mean the demarcation boundary of any band.
Any band on a CFD is always going to be bounded by
two lines: a top line and a bottom line. The bottom line
of a given band will be the same as the top line of
the succeeding band—should such a subsequent band
exist. The chart in Figure 4.2, for example, has six bands
corresponding to each of the process states and it has
seven lines that mark the boundaries. For clarification,
technically, the bottom line of the “Done” band in Figure
4.2 is the line that runs along the bottom of the chart at
the X-axis. For the purposes of CFD definition, though,

Chapter 4 - Introduction to CFDs 66

this line can be ignored.
Note: unless otherwise specified, when I say “top line

of a CFD” Imean the top line of the top-most band.When
I say “bottom line of a CFD” I mean the top line of the
bottom-most band. This is illustrated in Figure 4.3:

Figure 4.3: The Top and Bottom Line on a CFD

I began this section by pointing out that the most
important thing to remember about CFDs is that they are
fundamentally about process arrivals and departures.
Any chart that does not model or graph these arrivals
and departures properly or any chart that includes ex-
traneous information not considered an arrival or de-
parture cannot be properly called a Cumulative FlowDi-
agram. This brings us to the first of several fundamental
properties of CFDs:

CFD Property #1: The top line of a Cumu-
lative Flow Diagram always represents the
cumulative arrivals to a process. The bottom
line on a CFD always represents the cumula-
tive departures from a process.

Chapter 4 - Introduction to CFDs 67

When I say “always” I mean “always”. Any chart that
contains additional outside lines that do not represent
process arrivals and departures is not a CFD. Also note
the use of the word “cumulative” (this is a Cumulative
FlowDiagram, after all). Any chart that does not account
for cumulative arrivals and departures properly is not a
CFD (more on this later). It is important to remember—
as mentioned in Chapter 2—that the definition of the
boundaries of your process is essentially up to you.How-
ever, once chosen, those boundaries will be represented
by the lines on your graph as defined above. You can
have as many bands that represent as many workflow
steps as you want in between your two boundaries. As
we will see, it can be very advantageous and strongly
recommended—but by no means necessary—to repre-
sent those additional states on your diagram. If you do
choose to include those additional states, then the top
and bottom line of the band at each workflow step rep-
resents that state’s arrivals and departures, respectively.

For example, let’s say I have a process that looks like:

Figure 4.4: Example Process

Those of you familiar with Kanban may recognize
this as a Kanban board, but the following discussion is
equally applicable to amore ScrumorXP style of process
that has columns as simple as “To Do”, “Doing”, and
“Done” (howKanban canbeused tomodel a ScrumorXP

Chapter 4 - Introduction to CFDs 68

process is well beyond the scope of this book; however,
the principles discussed here apply regardless of the
particular methodology that has been chosen).

In this example, arrivals to the process are denoted
by the “Analysis Active” column, and departures from
the process are denoted by the “Done” column. A simple
CFD that models only the overall cumulative arrivals
and departures in this process might look like:

Figure 4.5: Total Process Arrivals and Departures Only on a CFD

Notice that there are only two bands on this diagram.
As always, the top line of the top band represents the
cumulative arrivals to the “Analysis” column and the
top line of the bottom band represents the cumulative
departures to the “Done” column. Figure 4.5 is a per-
fectly valid CFD for the process shown in Figure 4.4. One
question that you may want to keep in the back of your
mind as you go through this discussion is: what do you
think the advantages or disadvantages of visualizing
your flowas only two lines andbands as shown inFigure
4.5?

If we wanted a little more detail about our process,

Chapter 4 - Introduction to CFDs 69

we could easily include in the above diagram the cu-
mulative arrivals and departures for each of the inter-
mediate workflow steps between “Analysis Active” and
“Done”. If we were interested in doing so, then our CFD
would morph into the diagram depicted in Figure 4.6:

Figure 4.6: A Basic CFD

The several lines in Figure 4.6 now correspond to the
cumulative arrivals and departures at each step in the
workflow.

One quick thing before I proceed: youwill notice that
in this picture I have shown the queuing states or “Done”
columns for Analysis and Development rather than just
showing the Analysis and Development steps each as
their own layer on the CFD. I have become a big fan of
this approach as I believe this has the potential to give
us greater insight into flow problems. For example, in
the above chart we will potentially want to pay partic-
ular attention to the bands that represent the “Analysis
Done” and “Development Done” columns. Awidening of
these layers could hint at something going wrong in our
process—but I am getting a little ahead of myself here.

Chapter 4 - Introduction to CFDs 70

The final thing to know about CFDs is they are in-
trinsically linked with Little’s Law. In fact, Dr. Little has
usedCFDs in several of his publicationswhen explaining
his eponymous law. I spent so much time in the last
chapter discussing Little’s Law’s assumptions because
many times a violation of one of those assumptions will
clearly show up on a CFD. That is the good news. The
bad news is that many times an assumption violation
will not clearly reveal itself on a CFD. This is why it is so
important to know the assumptions behind the law and
be able tomap them to the context inwhich the datawas
collected. If you understand the assumptions then you
will be able to make the necessary process adjustments
for improved predictability. The last bit of good news
is that I am going to spend the next several chapters
explaining exactly how to make those adjustments.

Constructing a CFD

The next step in learning how a CFD can help us is to
understand how to construct one. To start, most people
will tell you that to create a CFD, all you need to do is
physically count all work items in progress at each step
of your process and then just plot those counts on your
chart at regular reporting intervals. I call this approach
“building a chart based on counts”. Not to put too fine a
point on it, but building a chart just by counting items in
progress is, in a word, dubious.

To explain why, I would like to explore an example
that might illustrate the point better. For this example,
I am going to use the same metaphor that Dr. Little
himself has used in several of his publications.

Suppose that the system we wish to model is that
of a supermarket. This particular shop may have set

Chapter 4 - Introduction to CFDs 71

hours that it opens and closes each day, or it may be—
as is the case with more and more American shops—
open twenty-four hours a day and seven days a week.
At various times throughout its hours of operation, it
will have customerswho enter and leave the shop. Some
customers will make purchases while others will leave
empty-handed.

Having this image in mind, let’s explore two very
important facts about our shop example:

1. Given its physical structure, it is very obvious to
determine when customers have entered the shop
and when customers have left the shop. Another
way of saying this is that our shop has a very clear
point at which customers are said to have arrived
to the shop, and there is a very clear point at which
customers are said to have departed the shop.

2. Every customer who enters the shop ultimately
departs the shop. There are no customers who
magically disappear. Even in the case of the contin-
uously open shop, customers must inevitably and
eventually leave. This fact is true regardless of how
long customers spend in the shop or regardless of
whether they made a purchase or not.

Going forward, let’s assume we are dealing with a
shop that is continuously open and that we are tracking
hourly arrivals and departures (the “open-close” sce-
nario will be discussed later).

In this example, how might we visualize the flow of
customers on a CFD? Well, as I have just stated, a CFD is
all about arrivals and departures, so the first thing we
need to ask ourselves: how do we determine if someone
has arrived or departed our shop? One of the reasons I
chose this particular example is because answering that

Chapter 4 - Introduction to CFDs 72

question in this scenario is actually very easy. An arriv-
ing customer is anyone who enters the shop from the
outside, and a departing customer is anyone who leaves
the shop from the inside. To calculate these arrivals and
departures, we could easily install turnstiles at all doors
and count the number of peoplewho enter and exit over
time. These turnstiles would not track how long each
individual spent in the shop, nor would they be able
to tell us if a departing individual made a purchase or
not. They would, however, increment an arrival count
for each customer who entered the shop (went from
the outside in) and increment a departure’s count for
each customer who exited (went from the inside out).
Every hour we could go and read those counts off the
turnstiles and plot them our graph. If we were tracking
those counts in a spreadsheet, the data might look like
Figure 4.7:

Figure 4.7: Cumulative Count of Arrivals and Departures for the
Shop Example

If using a spreadsheet, this data could easily be con-
verted into an Area Chart. That Area Chart, in this case,
would be a CFD. Using the data from above, our Cumu-
lative Flow Diagram for this example might look like
Figure 4.8:

Chapter 4 - Introduction to CFDs 73

Figure 4.8: Excel CFD for Shop Example

Let’s say now that we want to add a process step
that is “checkout”. Let’s further say our shop has a sin-
gle queue that feeds all cashiers. We could then install
one turnstile that all customers go through to get to
the checkout queue and count arrivals as before. Addi-
tionally, let’s say that after completing their purchase,
all customers must exit the shop through the overall
shop departures turnstile. Our data might now look like
Figure 4.9:

Figure 4.9: Adding a Checkout Step to the Shop Example

Chapter 4 - Introduction to CFDs 74

And our CFD would now look like Figure 4.10:

Figure 4.10: Adding Checkout Line to Shop CFD in Excel

This example is straightforward enough so far, but
it gets very tricky when we start consider some special
cases. For instance, how do we account for those cus-
tomers who enter the shop but then immediately turn
around and leave for any number of reasons: maybe
they forgot their shopping list, maybe they got a call and
need to go outside for better reception or privacy, etc.?
Do we really want to count those customers as having
“arrived” and “departed” the shop? Maybe. Maybe not.
Similarly, what about those customers who enter the
checkout queue but leave immediately because they
realize that they failed to pick up an item, because they
picked up the wrong items, or because they decide that
they do not want to make any purchase after all? Do we
reallywant to count those customers as having “arrived”
and “departed” the checkout queue?

The skeptics out there might be thinking that the
answer to this problem is easy. In these special cases,

Chapter 4 - Introduction to CFDs 75

simply decrement the arrival count. However, if this
decrementing of arrival count happens across the re-
porting interval, the net effect is that the lines on our
CFDwill go down. That is to say, if our reporting interval
is every hour on the hour, and four customers arrive at
9:59am (and we increment our arrival count), but they
then leave at 10:01am for one of the special cases above
(and we decide to decrement our arrival count) then the
data in our spreadsheet will look like Figure 4.11:

Figure 4.11: Data for Non-Standard Departures

And our CFD will look like Figure 4.12:

Chapter 4 - Introduction to CFDs 76

Figure 4.12: Excel CFD for Non-Standard Departures

The difference between Figure 4.9 and Figure 4.11
is subtle but important. Note that the “Entered Shop”
line in Figure 4.11 actually goes down. You might be
thinking “No problem. We have modeled exactly what
happened.” But did we? I would argue that we did not.
That customer physically arrived to our shop and then
left. If we first increment then subsequently decrement
our arrival count then we have a possibility of a nega-
tive arrival rate (which, by the way, violates the whole
principle of a Cumulative Flow Diagram). But in the real
world it is not possible to have a negative arrival rate.
Arrivals are binary: either something has arrived or it
has not. To handle the case of a non-standard departure,
we essentially have two choices: (1) count a customer
as having arrived and then departed; or (2) not count a
customer as having arrived at all—i.e., it was a mistake
to ever have incremented our arrival count in the first
place.

This is where building a CFD based on counts breaks
downandwhy it is very difficult—andnot at all recommended—

Chapter 4 - Introduction to CFDs 77

to build a CFD just by counting items.
So if we cannot use counts, what do we use to create

a CFD? The best approach would be to give each indi-
vidual customer a timestamp for when they entered the
shop, forwhen they entered the checkout queue, and for
when they departed the shop. An example of this data
might be what is shown in Figure 4.13:

Figure 4.13: Timestamps for Customers

If a customer now exits the shop for any reason other
than a “normal” one then we could reflect that in our
data in one of two ways. First, we could choose to enter
a departure timestamp and then “tag” that departure
with a special reason. This would give us an opportunity
to filter out that “bad” data if we choose to do so when
building our CFD (this tag and filter strategy could be
employed for otherwork item types aswell, butmore on
that later). This particular approach is potentially best
for customers who leave a queue and we do not expect
them to return. A spreadsheet that shows this approach
might look like Figure 4.14:

Figure 4.14: “Tagging” a customer with an Exception Reason

Second, we could choose to simply delete the arrival

Chapter 4 - Introduction to CFDs 78

timestamp as if the customer never entered the par-
ticular downstream queue. This strategy would be an
acknowledgement that it was a mistake to ever have
counted the arrival in the first place. This case might be
a better solution for items that we expect to return to
the queue at a later date (e.g., the situation where a cus-
tomer leaves the checkout queue to go pick up additional
items but who will ultimately return to checkout).

When building a proper CFD, either of these ap-
proaches is valid. This brings us to the second funda-
mental principle of CFDs:

CFD Property #2: Due to its cumulative na-
ture, no line on a CFD can ever decrease (go
down).

You can immediately spot that a CFD has not been
constructed properly if you see lines on the chart that
go down. A properly constructed CFD always has lines
that are either increasing (going up) or are flat. Not
to belabor the point, but this non-decreasing effect is
precisely why these charts are called Cumulative Flow
Diagrams.

I hope you see how this example very closely paral-
lels the types of decisions that wemake every day in our
knowledge work process. A customer who enters a shop
but then abruptly leaves is akin to an item that arrives
to the Analysis Active column of the board shown in
Figure 4.4 but then gets taken off the board forwhatever
reason (de-prioritized, de-scoped, etc.). In this case it
might be best to simply remove the timestamp that had
been given to the itemwhen itwas placed in theAnalysis
Active column and proceed as if it had never arrived.

A customer who enters the checkout queue but then
leaves for whatever reason is akin to an item that has

Chapter 4 - Introduction to CFDs 79

made it to the Test column in Figure 4.3, but then it is
determined the item should not be in Test. If the reason
it should not be in test is because it is so broken that it
cannot even be tested, then the item should be moved
back to an appropriate prior step (Development, Analy-
sis, etc.) and the timestamp for the Test column should
be erased. If the item should not be in Test because it
is determined that the item is no longer needed, then
it should be moved directly to Done, given a departure
timestamp and potentially flagged as—for example—
“no longer needed”. (By the way, the normal discovery
of defects in the test column, to me, does not normally
constitute an egregious enough offense to cause the item
to be moved back to the development column.)

Thus, in knowledge work, in order to properly con-
struct a CFD, what we really need to do is track the date
that a particular item enters each step of our work flow.
An example of what that data might look like is shown
in Figure 4.15:

Figure 4.15: Example Data for building a CFD

Asmentioned previously, it is rather straight forward
to turn this data into a format we can use to build a CFD.
The addedbonus of using this format is that by collecting
dates this way, we now have all the data we will need to
calculate all the metrics and analytics to be discussed in
the rest of this book. I cannot stress this particular point

Chapter 4 - Introduction to CFDs 80

enough: by collecting data in this way, not only are we
assured of being able to build a correct CFD, but we also
get all the data we need to build an array of other very
useful charts—i.e., the analyticsweneed to help us along
the path toward predictability.

I have mentioned several times now that you should
not create a CFD from counting work items in progress
at each step in your workflow at every reporting inter-
val. Why do I make that statement when probably every
other reference you have read about CFDs says that you
should create your charts from item counts?

The only time you can use counts to create a CFD is if
your data satisfies both of the following conditions:

1. You never have items that move backward in your
workflow

2. You never have items that are just completely re-
moved from your process before they are com-
pleted (presumably never to be heard from again)

I do not know about you, but I happen to live in the
real world and in every process I have ever been a part
of, I have had at least one—if not both—of these things
happen and usually on multiple occasions.

Let’s take point #2 first. I hope it is easy to imagine
that if all you are doing is tracking counts, and items are
simply removed from the process (by any other means
than going to your Done state) then it is quite possible
to have lines that go down (decrease) on your CFD. This
situation quite obviously violates CFD Property #2. You
could easily remedy this problem by making sure that
every item that exits the process gets counted as part of
the items in your “Done” state. This solution is perfectly
legitimate and, further, I would recommend you do this
regardless of how you collect your data (it might be

Chapter 4 - Introduction to CFDs 81

further beneficial to tag these items that do not complete
“correctly” with some metadata).

Which brings us to point #1. If you will remem-
ber, this is exactly the situation that I outlined in the
shop metaphor section, so I will refer you to that sec-
tion for the more detailed discussion of backward flow.
Very quickly, though, remember that items that move
backward—if not accounted for properly—can cause
the lines on our CFD to go down, which, again, violates
Property #2 of CFDs.

Lastly, and I really cannot stress this point enough,
to do any more serious analysis of your flow, you are
going to need to capture date data as opposed to counts
anyway (to measure things like Cycle Time and to build
some of the other analytics that we will discuss in later
chapters). So since you can create a CFD fromdates, why
not just use those?

Another thing that you have probably noticed by
now that none of the CFD examples I have shown have
a line labelled “backlog”. There are some very good rea-
sons for that. For example, why cannot I have a picture
that looks like Figure 4.16:

Chapter 4 - Introduction to CFDs 82

Figure 4.16: Showing a Backlog on a Chart

For the most part, any diagram that shows a backlog
is not a CFD. To explainwhy, I would first like to describe
my problem with the word “backlog” itself.

I am not trying to denigrate any particular process
here, but, unfortunately, the word backlog is so preva-
lent nowadays that its use carries with it connotations
that are counter-productive. Whether or not those con-
notations are correct is a different debate; the point here
is to just acknowledge that they exist.

It has been my experience that people immediately
assume two things when using the term backlog:

1. That items placed in a backlog are somehow com-
mitted to (or that they otherwise inherently have
value), and,

2. That items placed in a backlog are somehow prior-
itized.

A backlog, therefore, is merely a convenient con-
tainer for these candidate ideas. Commitment does not
happen until a team actually has capacity, and prioriti-
zation does not happen until at the time of commitment

Chapter 4 - Introduction to CFDs 83

(see Chapter 8 for how just-in-time commitment and
prioritization work).

To be clear, you could definitely have aCFD that looks
like Figure 4.16, but then it would be subject to all the
properties of a CFD that I have outlined in this chapter. If
you donotwant to signal that items in your backlog have
been committed to, then do not include a backlog band
on your chart. If you dowant communicate that backlog
items have been committed to, then, by all means, dis-
play the backlog. That decision, as we are about to see,
could have serious ramifications for your Cycle Time
calculation.

I am not saying that a chart that shows a backlog is
not useful—far from it. However, for the most part, a di-
agram that has a backlog on it is not a CFD. But, youmay
ask, “How then are we to do projections of when wewill
be done?” First, if you would like to do projections on a
graph, then what you want is a something other than a
CFD. Second, if you are truly serious about projections,
then what you really should be doing is some type of
probabilisticmodeling likeMonte-Carlo simulation. Pro-
jections, Burn-Ups, Release Planning, and Monte-Carlo
simulationwill all be covered in Chapter 14 and Chapter
15.

Conclusion

Mapping cumulative arrivals and departures to a pro-
cess over time is one of the best tools you have at your
disposal to visualize flow. Observing flow in this way
allows us to discern an impressive amount of useful
information regarding the health of our process.

To suitably construct a CFD, therefore, we must ac-
count for arrivals and departures appropriately. One

Chapter 4 - Introduction to CFDs 84

of the best ways to ensure that arrivals and departures
are displayed correctly is to make sure that we capture
the date that items enter each step of our workflow (as
illustrated in Figure 4.14). Those dates can then easily
and accurately be converted into the data we need to
build a proper CFD.

Now that you knowwhat CFDs are all about and how
to construct them, it is time to get on to understanding
what these graphs are telling us.

Key Learnings and Takeaways

• CFDs demonstrate the cumulative arrivals and de-
partures to a process over time, and, as such, are
one of the best tools available for visualizing flow.

• This type of visualization communicates a lot of
quantitative andqualitative information at a glance.

• The anatomy of a CFD is:
– The X-axis represents the process timeline.
– The Y-axis represents the cumulative count of
items in the process at each reporting interval.

– The labels and reporting intervals on the chart
are at the sole discretion of the graph’s cre-
ator.

• Understanding the correct way to construct a CFD
is essential to knowing how to interpret it.

• CFD Property #1 is that the top line of a Cumulative
Flow Diagram always represents the cumulative
arrivals to a process. The bottom line on a CFD
always represents the cumulative departures from
a process.

• CFD Property #2 is that due to its cumulative na-
ture, no line on a CFD can ever decrease (go down).

Chapter 4 - Introduction to CFDs 85

• The best way to capture data for a CFD is to track
the date at which an item enters each step of your
process workflow. You are going to need those data
points for other analysis anyway, so you might as
well collect those from the start.

• Three easy ways to spot if a CFD has not been
constructed properly:

– If any line on the chart slopes downward on
any part of the graph.

– If something that sounds like a “backlog” has
been graphed (remember, a visualized back-
log may not necessarily be bad—but it usually
is!).

– If some type of projection has been plotted.

Chapter 5 - Flow Metrics
and CFDs
The reason I was so pedantic about how to correctly
collect data to build CFDs in the previous chapter is
because only with a properly constructed CFD can we
accurately perform the analysis techniques thatweneed
for predictability. Those techniques are precisely what I
plan to present in this chapter and the next. We begin
our discussion with some quantitative analysis.

Work In Progress

Since the top line of a CFD represents the cumulative
arrivals of items to our process, and the bottom line of a
CFD represents the cumulative departures of items from
our system, then the vertical difference between those
two lines at any reporting interval represents the total
Work In Progress in the system. As you have probably
figured out, this principle can easily be extended such
that we can measure the Work In Progress between any
two points in the system at any point in time. That is
to say, we can quickly measure the Work In Progress in
the Analysis Active step, in the Development Done step,
or the total Work In Progress between Analysis Done
and Test (just to name a few examples). Thus, our next
fundamental principle of CFDs is:

CFD Property #3: The vertical distance be-
tween any two lines on a CFD is the total
amount of work that is in progress between
the two workflow steps represented by the
two chosen lines.

86

Chapter 5 - Flow Metrics and CFDs 87

Figure 5.1 shows the total WIP as 90 work items on
September 1:

Figure 5.1: Reading Total Work In Progress off of a CFD

In this example, we got to the number 90 by subtract-
ing the number of work items (or y-value) of the bottom
line of the CFD on September 1 from the number of
work items of the top line on September 1. Specifically,
the bottom line on the chart shows a value of 200 work
items on September 1. The top line shows a value of 290
work items on September 1. Subtracting the bottom line
number of work items from the top line number of work
items (290 – 200) gives us a total WIP of 90 work items.

Reading WIP off of each step in the workflow is
accomplished inmuch the sameway as shown in Figure
5.2:

Chapter 5 - Flow Metrics and CFDs 88

Figure 5.2: Reading WIP at Each Step of the Workflow

The calculation of these numbers was performed in
exactly the same way as the total WIP calculation; i.e.,
by subtracting the y-value of the bottom line of a given
band from the y-value of the top line of a given band.

Approximate Average Cycle Time

Continuing the same example, the horizontal difference
between the top line of a CFD and bottom line of a CFD at
any point along the graph is your process’s Approximate
Average Cycle Time. To approximately calculate how
long—on average—it took for items to complete at a
particular reporting interval, we choose the point on the
bottom line of the CFD that corresponds with the date
that we are interested in, and thenwe draw a horizontal
line backward until it intersects the top line of the CFD.
We then look to see what date corresponds with that top
line intersection and subtract it from the date we just
got from the bottom line. This subtraction will give you
the Approximate Average Cycle Time for the items that
finished on the bottom line date of interest.

Chapter 5 - Flow Metrics and CFDs 89

This leads us to the next fundamental property of
CFDs:

CFD Property #4: The horizontal distance
between any two lines on a CFD represents
the Approximate Average Cycle Time for
items that finished between the two work-
flow steps represented by the chosen two
lines.

Continuing on from the previous example, let’s say
we want to know what the Approximate Average Cycle
Time was for items that finished on September 1st. In
this case our calculation would look like Figure 5.3:

Figure 5.3: Overall Process Approximate Average Cycle Time
Calculation

In this example, to calculate the Approximate Aver-
age Cycle Time for stories that finished on September
1 (which is this example is 24 days), you perform the
following steps. (Please note that in this case the report-
ing interval is days. These steps would be the same for
whatever time unit you choose to report your data; e.g.,

Chapter 5 - Flow Metrics and CFDs 90

weeks, months, etc.):

1. Start with date you are interested in on the bottom
line of the graph. In this case, that date is Septem-
ber 1.

2. Draw a horizontal line backward from that point
on the bottom line until the line intersects a point
on the top line of the CFD.

3. Read the date value of the top line of the CFD at that
intersection point. In this case that date is August
9.

4. Subtract top line date from the bottom line date. In
this case, September 1 minus August 9 is 23 days.

5. Add 1 to the result. In this case, 23 plus 1 is 24 days.

Why add one day in Step #5? I always advise the
addition of one “time unit” (in this case that time unit
is days) because I would argue the shortest amount of
time that an item can take to complete is one unit. For
example, if a given work item starts and completes on
the same day (e.g., September 1), what is its Cycle Time?
If we were just to subtract September 1 from September
1 we would get a Cycle Time of zero days. I think that
result is misleading. After all, zero days suggests that no
time whatsoever was spent completing that item. That
is not reflective of reality which is why one day needs
to be added. Further, the addition of one day makes
the calculation more inclusive. For example, if a work
item starts on September 1 and finishes on September
2, what is its Cycle Time? If all we did is subtract those
two dates, we would get a Cycle Time of one day. But I
would suggest that since time was spent on that item on
both September 1 and September 2 that the more repre-
sentative Cycle Time is two days. Which means that we
would again need to add one day to our calculation. You

Chapter 5 - Flow Metrics and CFDs 91

might disagree with this advice for your own particular
situation. And that is ok (as long as you are consistent
in your calculations). You will just want to note, though,
that all Cycle Time calculations in this book follow the
“addition of one time unit” rule.

Getting back to our original discussion, the fact that
you can draw a horizontal line on a CFD and subtract
two dates to come up with an Approximate Average
Cycle time should be amazing to you for a couple of rea-
sons. The first is that to normally calculate an average
you simply add up a whole bunch of values and then
divide by the total number of values that youhave added
up. However, in this case all we are doing is subtracting
two dates to come up with an average. Seems strange
that that would work, but it does.

The second reason that this result is remarkable, is
that the items that started in the Analysis Active col-
umn (the first column on the board) are not necessarily
the stories that have finished in the Done column (the
last column on the board), yet this calculation will still
yield an Approximate Average Cycle Time. Interestingly
enough, how good an approximation this calculation
is will depend on how well we are adhering to the
assumptions that make Little’s Law work.

As with the Work In Progress calculation, this prop-
erty can also be extended to handle the calculation
between any two arbitrary points on your chart. That
means we can draw horizontal lines to calculate the
Approximate Average Cycle Time through Analysis Ac-
tive, or through Test, or the Approximate Average Cycle
Time from Analysis Done through Development Done
(again, to name a few examples). Pictorially, some of
these examples would look like Figure 5.5:

Chapter 5 - Flow Metrics and CFDs 92

Figure 5.5: Approximate Average Cycle Times at Each Step in the
Workflow

Note that this calculation is only valid for items that
have finished. That is to say, this horizontal line that you
draw to make this calculation must begin at the top line
of the bottom band at the reporting interval that you
are interested in and be drawn “backward” until it in-
tersects the top line. Starting at the top line and drawing
a line “forward” could cause you to never intersect the
top line of the bottom-most band. The implication here
is that CFDs are only good at exploring what already has
happened in your process. This point is so important
that I am going to call it out as its own property of CFDs:

CFD Property #5: The data displayed on a
CFD depicts only what has happened for a
givenprocess. Any chart that shows any type
of projection is not a CFD.

Again, I am not saying here that projections are not
important—far from it. All I am saying is that projec-
tions forward about what will or could happen in your

Chapter 5 - Flow Metrics and CFDs 93

process will require a completely different chart—and
more probably a completely different approach (like
Monte Carlo Simulation). Just know that we cannot use
CFDs for that forecasting purpose or that, if you do, you
cannot call the resulting projection graph a CFD. I will
spend much more time on projections later in the book
(Chapter 14 and Chapter 15).

As you have probably noticed, I have gone through
great pains to stress the fact that this horizontal line
calculation only gives us an Approximate Average Cycle
Time. I am being so pedantic about this because there
is a lot of misinformation or disinformation about CFDs
out there. If you were to go out and do some research
on Cumulative Flow Diagrams, you will probably find
that many people will tell you that doing this horizontal
line calculationwill give you an exact Cycle Time. It does
not. The reason is because the items that start on the top
line of your Cumulative Flow Diagram (at the beginning
of your horizontal line) are not necessarily the items
that finish at the bottom line of your Cumulative Flow
Diagram (at the end of your horizontal line). Therefore,
it would be impossible to calculate an exact Cycle Time
for those items using just the diagram alone. Further,
some people will tell you that this horizontal line cal-
culation will lead to an exact average Cycle Time. This
statement is also potentially incorrect. Unless we go in
and look at the data that was used to generate the chart,
orwe have an understanding of some of the policies that
have been put in place to generate the diagram the best
we can say is that this horizontal calculation will lead
to an Approximate Average Cycle Time. However, this
approximation can be very good. In Chapters 5-7, I will
explain some policies that you can put in place within
your own team, or your own process, such that this
calculation will give you an excellent approximation.

Chapter 5 - Flow Metrics and CFDs 94

There is another great (potentially most important)
reason to understand why this horizontal line repre-
sents only an Approximate Average Cycle Time. It turns
out the comparison of the Approximate Average Cycle
Time off of your CFD with the exact average Cycle Time
from your real data can give you tremendous insight
as to the health of your process. We will get into the
specifics of that calculation and analysis in Chapter 9.

Average Throughput

If the bottom line of your CFD represents the departures
from your process, then the slope of that line between
any two points (reporting intervals) is your exact aver-
age Throughput between those two points. This slope
calculation is the very same “rise over run” calculation
that you may remember from your previous mathemat-
ics training (it is ok if you do not remember as I have
included an example of this calculation in the discussion
after Figure 5.6). Furthermore, just to be clear, this is
indeed an exact average Throughput calculation, not an
approximate average as in the Cycle Time calculation
above.

Likewise, if the slope of the bottom line of the CFD is
your average Throughput, then the slope of the top-most
line is your average arrival rate. The slope of that top
line represents how fast work is coming into our system,
while the slope of the bottom line represents how fast
work leaving our system.

This leads to the last of our fundamental properties
of Cumulative Flow Diagrams:

Chapter 5 - Flow Metrics and CFDs 95

CFD Property #6: The slope of any line be-
tween any two reporting intervals on a CFD
represents the exact Average Arrival Rate
of the process state represented by the suc-
ceeding band.

As you have probably already guessed, Property #6
is a direct result of Property #1, but it is so important
that I wanted to call it out on its own. One important
corollary to this property is that the slope of any line also
represents the exact average Throughput (or Departure
Rate or Completion Rate) for the preceding workflow
step.

To visualize this result, let’s continue to look at the
same example that we used in the WIP and Cycle Time
sections (Figure 5.1). To calculate the Throughput of the
overall process, we simply compute the slope of the
bottom line of the CFD (the top line of the Done state in
Figure 5.6). Likewise, to calculate the arrival rate we use
the same slope calculation for Analysis Active line. Both
situations are shown in Figure 5.6:

Chapter 5 - Flow Metrics and CFDs 96

Figure 5.6: Arrival Rate and Departure Rate on a CFD

To calculate Average Throughput you will first need
to ascertain the date range you are interested in. In
this example (Figure 5.6) that date range is June 21
– November 16. The number of days in that range is
our “run”, or, in this case, November 16 minus June 21
equals 148 days. Second, we need to figure the “rise” of
our bottom line work item data over that date range.
The number of items on the bottom line at June 21 is
zero and the number of items on the bottom line at Nov
16 is 517. Subtracting those two numbers gives us our
“rise”, or in this case 517 – 0 = 517. To calculate Average
Throughput, then, you simply divide the rise by the run.
In this case, our Average Throughput is 517 divided by
148 which equals 3.49 items per day. You can perform
the exact same calculation for Average Arrival rate by
substituting the data for the top line of the CFD into your
rise over run formula.

Just as withWIP and Cycle Time, we can perform the
slope calculations to get the Average Arrival or Average
Departure rate for any step of the workflow as shown in
Figure 5.7:

Chapter 5 - Flow Metrics and CFDs 97

Figure 5.7: Arrival/Departure Rates for Each Step of the Work-
flow

Conclusion

As you can see, one of the things that makes CFDs so
powerful is that you can easily visualize and/or compute
all the importantmetrics of flowmentioned in Chapter 2
off of just one diagram. Putting it all together pictorially
is shown in Figure 5.8:

Chapter 5 - Flow Metrics and CFDs 98

Figure 5.8: The Three Basic Metrics of Flow on a CFD

Numerically, these calculations look like Figure 5.9:

Figure 5.9: Numerical Representations of the Metrics of Flow

As I mentioned in Chapter 2, it is possible to segment
WIP into several constituent types (as also mentioned
in Chapter 3 on Little’s Law). CFDs are no different. As
youmay have guessed by now, whenwe collect our flow
data, we can either look at that dataset as a whole in a

Chapter 5 - Flow Metrics and CFDs 99

CFD, or we can construct a CFD based on only one or
more of the subtypes. For example, we can look at a
single CFD that shows just the data for the user story
type, or we can build a CFD based on just defects, or
we can generate a CFD that combines both user stories
and maintenance—to just name a few. This property
of CFDs will open up all kinds of avenues of analysis
for you. For example, at the portfolio level, you may
want to look at data combined across all teams, or you
may just want to filter based on an individual team. Or
maybe you want to filter by release. At the team level,
you might want to filter by some other custom field that
is particularly relevant to your context (as in the “bad
data” example from above). All of these activities are
perfectly ok and I would challenge you to think about
what data attributes you might want to collect and then
filter on when analyzing your CFDs.

CFDs offer a concise way to simultaneously visualize
the three basic metrics of flow: WIP, Cycle Time, and
Throughput (albeit sometimes in the form of averages
or approximate averages). You can only be guaranteed
to calculate these metrics, however, if your graph obeys
all six properties of a CFD:

CFDProperty #1 is that the top line of a Cumulative
Flow Diagram always represents the cumulative
arrivals to a process. The bottom line on a CFD
always represents the cumulative departures from
a process.

CFD Property #2 is that due to its cumulative na-
ture, no line on a CFD can ever decrease (go down).

CFD Property #3 is that the vertical distance be-
tween any two lines on a CFD is the total amount of

Chapter 5 - Flow Metrics and CFDs 100

work that is in progress between the two workflow
steps represented by the two chosen lines.

CFD Property #4 is that the horizontal distance
between any two lines on a CFD represents the
Approximate Average Cycle Time for items that fin-
ished between the two workflow steps represented
by the chosen two lines.

CFDProperty #5 is that the data displayed on a CFD
depicts onlywhat has happened for a given process.
Any chart that shows any type of projection is not a
CFD.

CFD Property #6 is that the slope of any line be-
tween any two reporting intervals on a CFD repre-
sents the exact Average Arrival Rate of the process
state represented by the succeeding band.

With a strong quantitative understanding of CFDs,
we move now to a more qualitative analysis—which is
really where the predictability rubber hits the road.

Key Learnings and Takeaways

• CFD Property #3: The vertical distance between
any two lines on a CFD is the total amount of work
that is in progress between the twoworkflow steps
represented by the two chosen lines.

• CFD Property #4: The horizontal distance between
any two lines on a CFD represents the Approximate
Average Cycle Time for items that finishedbetween
the two workflow steps represented by the chosen
two lines.

• CFD Property #5: The data displayed on a CFD de-
picts only what has happened for a given process.

Chapter 5 - Flow Metrics and CFDs 101

Any chart that shows any type of projection is not
a CFD.

• CFD Property #6: The slope of any line between
any two reporting intervals on a CFD represents
the exact Average Arrival Rate of the process state
represented by the succeeding band.

• A CFD is only a CFD if it obeys all six properties
because only by following all of these properties
can you be guaranteed to derive the correct quan-
titative metrics of flow off of your graph.

• Consider building CFDs that show both “Active”
and “Done” states within workflow steps. For ex-
ample, if your “Development” workflow step if
further segmented into “Active” and “Done”, then
think about showing both of those sub columns on
your CFD.

• Some common myths about CFDs:
– It is always correct to build a CFD from work
item count data at each reporting interval.

– A horizontal line represents an exact Cycle
Time or an exact average Cycle Time.

– It is always ok to represent a traditional back-
log on a CFD.

– It is possible to make a qualitative assessment
of a CFD without understanding its context.

Chapter 6 - Interpreting
CFDs
Now that you have a good grasp of how to do basic
quantitative analysis on a CFD, you will see that you
have already built an intuition around how to spot qual-
itative flow problems without doing any computations.
An exploration of how to interpret a Cumulative Flow
Diagram is what this chapter is all about.

First, though, some words of warning. The most im-
portant thing to remember about any qualitative analy-
sis of CFDs is that the diagrams themselves are very con-
text specific. If you look at a CFDwithout understanding
the context in which it was created, then all you are
doing is looking at a picture. Just like any visualization,
a CFD is not going to tell you exactly what is wrong
with your process or exactly how to fix it, but it is going
to shine a light or a magnifying glass on the places to
investigate.

To that point, you will be tempted to jump to snap
judgments the next time you see a Cumulative Flow
Diagram. Do not. This is the trap that most knowledge
work blog posts and other publications on CFDs fall into.
Be better than that! The reason we visualize flow on a
CFD is not so that we can draw superficial conclusions
about what is wrong with a given process. Rather, the
reason we visualize flow via a CFD is so that we can
begin to ask the right questions sooner. CFDs are not
going to do our jobs for us. They do not replace thinking.

One last thing: it may seem strange, but doing any
qualitative analysis onCFDs really requires soundknowl-

102

Chapter 6 - Interpreting CFDs 103

edge of how to do quantitative analysis on CFDs. If
you have skipped ahead to this chapter because you
assumed you knew CFDs, you may want to go back and
read both Chapter 4 and Chapter 5.

Keeping all that in mind, let’s take a look at some
common CFDs patterns and explore what questions we
might ask when we see these shapes emerge.

Mismatched Arrivals and Departures

Let’s say we had a CFD that looked like:

Figure 6.1: Mismatched Arrivals and Departures

In this picture the slope of the top-most line is steeper
than the slope of the bottom-most line. This is a classic
pattern that develops whenever items arrive to our pro-
cess faster than they depart. Most companies that I visit
that struggle with predictability have a CFD that looks
something like this.

Why is this so bad? Any time that we have items that
arrive to our process faster than items depart from our
process means that WIP will grow over time. In Chapter

Chapter 6 - Interpreting CFDs 104

3 on Little’s Law, we learned that an increase inWIPwill
almost certainly lead to an increase in Cycle Time (recall
from that chapter that having arrival rate equal depar-
ture rate—onaverage—is one of the key assumptions for
Little’s Law to work). It is impossible to be predictable
in a world where WIP constantly increases and Cycle
Times elongate.

By definition, a process that exhibits a shape similar
to Figure 6.1 is unstable. Process stability is fundamental
to process predictability. So much so that I will devote
all of the next chapter (Chapter 7) to explaining some
causes and some remedies whenever the arrivals to
your process exceed departures.

Flat Lines

Another pattern that I look for on a CFD iswhenever any
lines that flatten out over long periods of time (remem-
ber that lines can never go down!). Figure 6.2 shows an
example of this:

Figure 6.2: Flat Throughput Sections on a CFD

Chapter 6 - Interpreting CFDs 105

Depending on your perspective, these lines could
represent either periods of zero arrivals or periods of
zero departures. Usually you will be concerned about
these flat lines as periods of zero departures. The reason
why is because zero departuresmeans nothing is getting
done. In other words, no value is being delivered to the
customer (or to a downstream step).

There are all kinds of circumstances that could cause
this pattern to emerge.Maybe there is a period of several
public holidays where most of the staff is out (the two
weeks around Christmas and New Year’s in the U.S. is
a good example). Maybe the team is blocked by some
external event such as thewhole test environment being
down such that testing cannot complete.

Whatever the reason, think about what this zero
Throughput is doing to your predictability. If a horizon-
tal line represents an Approximate Average Cycle Time
on your CFD, what do you think is happening to that
approximation during periods of long, flat Throughput?
What happens when we plug in a zero for average
Throughput in Little’s Law, but average WIP is non-
zero? What does that do to Cycle Time?

The point here is that an emergent flat line on a CFD
should trigger some type of urgent conversation and
that conversation should be about answering at least
two questions. The first question is “Why isn’t anything
getting done?” The second question is “What can we do
to get things flowing again?”

Stair Steps

A batch transfer in your process will manifest itself
as “stair steps” on your CFD. By stair steps I mean a
flat period on a line (as discussed above) immediately

Chapter 6 - Interpreting CFDs 106

followed by a jump up in arrival rate as illustrated in
Figure 6.3:

Figure 6.3: Batch on a CFD

For example, if your team has a reporting interval
of every day on your CFD, but—for whatever reason—
youwait five days to replenish the input column on your
board. What you will see on your chart is five straight
days of a flat input line followed by an immediate in-
crease when the column is replenished. Similarly, what
if the bottom line of your CFD represents a deployment
to production, but you only do that deployment every
three months? What is that going to look like on your
CFD?

Some references you may have read suggest that
these stair steps are caused by a regular cadence—but
they do not have to be. Any batch transfer—whether
due to a regular cadence or not—will cause these stair
steps to form. If due to a regular cadence, then the stair
steps will be of roughly uniform size and shape. Non-
regular batch transfer will usually have a more uneven
appearance to the steps. Both of those situations are

Chapter 6 - Interpreting CFDs 107

shown in Figure 6.3.
It is important to note here, that batch in and of itself

is not necessarily a bad thing. What you will need to
do when you see stair steps appear on your Cumulative
Flow Diagram is to have a think about how batch is
affecting (positively or negatively) the predictability of
your system. Can those periods of batch be reduced?
Eliminated? Should they be? What would it take to do
that? What would the impact to Cycle Time be?

Bulging Bands

This is the one that most teams go after first. Any time
that you see a “bulging” band in a CFD, it clearly signals
an explosion ofWIP in that particularworkflow step. An
example of this is shown in Figure 6.4:

Figure 6.4: Bulging Bands on a CFD

We know that large WIP is bad because it almost
always results in longer Cycle Times and poorer pre-
dictability. The obvious questionweneed to ask is, “what
is causing our increased WIP”? As always, that answer

Chapter 6 - Interpreting CFDs 108

will depend on your specific situation. Maybe the team
is simply ignoring WIP limits and starting new work
arbitrarily. Maybe several key teammembers have gone
on holiday for extended periods of time. Maybe work
is progressing slowly due to poor requirements or poor
design. Any of these and more might explain any of the
bulging bands in Figure 6.4.What are some of the causes
for a pile up of work at your job?

One thing to look out for in these situations, though,
is that the cause of the increased WIP may not neces-
sarily be found in the workflow step where the bulge
appears. It could be due to a “push” from a previous
step, or it could be cause by some blockage in one or
more downstream steps. Do not be lulled into thinking
the problem is always in the obvious place.

Additionally, remember earlierwhen I suggested that
you should consider separating your workflow steps
into “Active” and “Done” and then you should graph
each of those sub-steps on your CFD? One reason I
recommend that approach is because those “Done” sub-
steps are clearly queuing columns—i.e., they are columns
where no value add work is happening; work is just
sitting there waiting to be pulled. I mention this now
becausewhile a bulging band in general is bad, a bulging
band in a queuing step can be especially bad. Ideally,
the bands on the CFDs that represent the queuing states
should be as thin as possible (I just told youwhy).When-
ever those bands are constantly thick or whenever they
bulge, then that pattern is suggesting something is going
wrong with our process.

Chapter 6 - Interpreting CFDs 109

Disappearing Bands

Bands that disappear altogether on a Cumulative Flow
Diagram could be telling us one of several things. The
first possibility is that the reporting interval that we
have chosen is too big. Consider, for example, that we
choose a reporting period of every week for our chart.
Let’s further say that the work in our Test column flows
through very quickly (e.g., in a day or two). In this case
it is very likely that on any given reporting interval
there will be zero Work In Progress in the test column
such that the test band on the CFD will not show up. An
example of bands disappearing is depicted in Figure 6.5:

Figure 6.5: Disappearing Bands on a CFD

A second cause for a disappearing band may be that
some upstream variability in our process is causing
downstream steps to be starved.

Another possibility, is that the team frequently de-
cides to skip a certain step in the workflow altogether
resulting in that step not having anyWork In Progress at
any given time. For example, it could be near the end of

Chapter 6 - Interpreting CFDs 110

a release and the team has decided to skip the Test step
in the workflow, deciding instead to push work directly
from Development into production. It would be up to
you to decide given your particular context whether this
is good or bad. While obviously an exaggerated case, in
this instance the Test band on the CFDwould completely
disappear—much like what is shown in Figure 6.5.

The S-Curve

Remember in the last chapter when I talked about the
special case of Little’s Law when system WIP is allowed
to go to zero? I gave two classic examples of when
this might happen. First, a project usually begins with
zero WIP and (ideally) ends with zero WIP. At a more
granular level, an ideal Scrum sprint starts with zero
WIP and ends with zero WIP.

Imention these examples again as the typical pattern
that emerges on CFD between any two time instances of
zero WIP is something called an “S-curve”. An S-curve
is characterized by a flat beginning section, followed by
a steep middle section, and finishing again with a flat
end period. This flat, then steep, then flat pattern iswhat
gives the graph its distinctive “S” shape as in Figure 6.6:

Chapter 6 - Interpreting CFDs 111

Figure 6.6: An S-Curve on a CFD

Thephenomena that causes this “S” pattern to emerge
is beyond the scope of this section, but know that, as
I have just stated, it usually happens between any two
time instances when WIP is allowed to go to zero. The
reason I mention this now is think about what this
S-curve does from a predictability standpoint. In this
context, do you think it is always easy to match arrival
and departure rates? Is it even possible?

Take it a step further. From a predictability perspec-
tive, do you think that it is optimal to manage projects
this way (remember, I am talking about predictability
here, not necessarily about how accounting or finance
sees the world)? Do you think it is predicatively op-
timal to multiply this effect several times during the
course of a project by breaking it up into several zero
WIP-bounded sprints? Howmight we becomemore pre-
dictable day to day, week to week, month to month by
never allowing WIP to go to zero?

For example, in Figure 6.6 how do you think the
team is doing at matching arrivals to departures at both
the beginning and end of this time period? Whether

Chapter 6 - Interpreting CFDs 112

reasonable or not, what we can say is that those flat
spots add inefficiencies and kill predictability. Is there
a better way to manage work such that we do not have
those start-stops and flat lines?

Just something to think about…

A Boring CFD

Suppose you have a CFD like Figure 6.7:

Figure 6.7: A “Good-Looking” CFD

Everything looks rather good, right? If it truly is, then
it is time to start asking questions about other process
improvement actions we might take. For example, is it
possible to get the lines even closer together by reducing
WIP and thus improving Cycle Time?What can we do to
make the Throughput line steeper?

The thing is, it is possible to get a very pretty CFD pic-
ture but still have a very dysfunctional process under-
neath. The best example of this is the accumulation of
Flow Debt. But that topic is so important that it deserves
its own chapter as well (see Chapter 9).

Chapter 6 - Interpreting CFDs 113

You may have noticed that I have not explicitly men-
tioned anything about using CFDs to spot bottlenecks
in your process. That omission was on purpose. It is
because I am dubious about that approach. This may
surprise you as if you have read anything about CFDs,
you have probably read how useful they are to spot
bottlenecks. I do not agree with this language. I be-
lieve that the best you can do by just looking at a CFD
is to pose some questions about some variability that
may be occurring. It is impossible to spot a systemic
bottleneck. This may seem like a subtle distinction to
you, but I prefer Deming’s and Shewhart’s language of
variability to that of Goldratt’s language of the Theory of
Constraints. I think you will get muchmore bang for the
buck thinking about knowledge work in this way. I feel
so strongly about this that I a chapter to this discussion
later (Chapter 13).

Conclusion

A discussion of all possible patterns that could emerge
on a CFD would be a whole book in itself (hmmm…good
idea). What I have given you here are some of the more
common things you will come across. I am hoping you
will use these examples along with your quantitative
analysis knowledge to discover the right questions to ask
sooner. Remember that the point of CFD analysis is not
just about looking at a pretty picture. The point is to look
at the graph in the context in which it was generated
and have a discussion about what the patterns mean to
overall process performance and predictability. Thus,
the real purpose for analyzing a CFD is to learn. You
learn by asking questions. “What’s going on with our
flow?” “Is it a good thing or bad thing?” “If good, how

Chapter 6 - Interpreting CFDs 114

can we keep doing it?” “If bad, what interventions can
we take to make things better?” A CFD not only gets you
asking the right questions sooner, but will also suggest
the right actions to take for increased predictability.

I started my discussion of CFDs by saying that not
only is most of the information out there in the Agile-o-
sphere incorrect concerning these charts, but also that
all tools that I have come across (at the time of this
writing) generate these graphs incorrectly (save the one
which I will discuss in a minute). So what are you to do?

One option is to capture the data manually as I have
outlined here and generate the chart yourself using
something like Excel. This is a reasonable approach and
one that many teams utilize. The problem with Excel is
it is not a very dynamic or interactiveway to analyze the
data. It also becomes cumbersome as your dataset gets
very large.

The second option is to use the ActionableAgileTM An-
alytics tool. This tool was built for the sole purpose of the
advanced analysis of these metrics of flow. At the risk
of putting forth a shameless plug, the ActionableAgileTM
Analytics toolwas created bymy company, so you can be
sure that any and all charts that are created by it are gen-
erated correctly (the ActionableAgileTM Analytics tool is
also great tool for generating Cycle Time Scatterplots—I
will discuss Scatterplots in Chapters 10-12).

There is a lot of chatter out there about the useless-
ness of Cumulative Flow Diagrams. Those discussions
are disappointing because a lot of these comments come
from well-known persons within the industry. Obvi-
ously, I am biased so all I want to suggest is that after
reading this chapter (and this book) you will make your
own mind up about the utility of CFDs. I am hoping to
have persuaded you otherwise by the time you finish.

The last thing to note is that the predictive power of

Chapter 6 - Interpreting CFDs 115

your CFDs depends almost entirely on how well your
process obeys the assumptions behindLittle’s Law (Chap-
ter 3). This point is so important, that the next three
chapters will explain how to spot violations of Little’s
Lawonyour charts andwhat you cando to correct them.

Key Learnings and Takeaways

• On your CFD, does arrival rate match departure
rate?

• Are there any bulges in the workflow step bands?
• Do any bands disappear?
• Are there any long periods of flat lines?
• Are there stair steps?
• Is there an S-curve?
• Think about improvements to consider if every-
thing looks good on your CFD.

Chapter 7 - Conservation of
Flow Part I
Imagine, for a second, an airportwhere the rate atwhich
planes landed far exceeded the rate atwhich planes took
off. Very little further imagination is needed to come to
the conclusion that, in this scenario, the total number
of planes situated at the airport would dramatically
increase over time. Itwould not be too long before all the
available gates at the airport became occupied and that
air traffic control (ATC) would be forced to find creative
places to park the extra aircraft. If the situation contin-
ued, sooner or later all reasonable space at the airport
would fill up, including utilizing any space available on
active runways. As soon as runways were occupied, no
new planes would be able to land nor would any planes
scheduled for departure be able to take off.

Obviously, in the real world, air traffic control does
everything it can to avoid this nightmare scenario. It
is for this precise reason why if a certain airport—let’s
say Chicago’s O’Hare (ORD)—is experiencing weather or
some other reduction of capacity, that ATC slows down
planes in the air headed to ORD or they put a ground
stop on all other airports that have aircraft scheduled
to travel to ORD. Anyone who travels with any amount
of regularity has probably experienced an incident like
this. You can bet that ATC is closely monitoring and
managing the rate at which planes take off at any given
airport and they are doing everything they can tomatch
that take off rate to the pace at which planes land.

You do not have to think too long to come up with

116

Chapter 7 - Conservation of Flow Part I 117

many similar examples. Theprinciple remains the same:
any time you try to shove items into a system at a faster
rate than items can exit the system, you are met with
disastrous consequences. This principle seems immedi-
ately obvious and intuitive. Yet, for whatever reason, we
constantly ignore this rule when wemanage knowledge
work. It is exactly this phenomenon that Little’s Law
assumption #1 is trying to address. Remember from
Chapter 3 that:

Little’s Law Assumption #1: The average in-
put or Arrival Rate of a process should equal
the average output or Departure Rate.

Stated in more layman’s terms, Little’s Law demands
that we only start work at about the same rate at which
we finish old work (on average). Assumption #1 consti-
tutes the first part of a principle known of the Conserva-
tion of Flow (CoF). Any time that flow is not conserved,
predictability suffers.

Defining Arrivals

Tounderstand if flow is not being conserved in your pro-
cess, you first need to clearly define an arrival point, and
clearly define departure point. I refer you once again to
Figure 2.1 (the queuing systemdiagram fromChapter 2).
To apply CoF to predictability, we must design a system
that clearly mimics what is going on in that diagram.

Let’s consider arrivals first. That is, we need to estab-
lish an explicit and obvious entry pointwhere teams can
pull in new work such that it is counted as WIP. This en-
try point usually takes the form of aWIP-limited column
on the front of your process, and you will normally see

Chapter 7 - Conservation of Flow Part I 118

this column labeled as “Input” or “Ready” or “To Do” or
the like (more on how to set theWIP limit on this column
a little later in this chapter). An example of what this
column might look like is shown in Figure 7.1:

Figure 7.1: Arrivals into a Kanban System

In Figure 7.1, items that have been placed onto the
“Ready” column are said to have arrived into the pro-
cess. This column represents a clear, unambiguous sig-
nal to the world that the team has accepted work.

Please note that this arrivals column is very different
from amore traditional backlog. It is not meant to be an
ever-expanding repository for all candidate customer
requests. The WIP Limit on this column represents the
real-time capacity of the system to take on new work,
and serves to force us to only pull in new work in a just-
in-time manner. This is one of the reasons why—as I
stated in Chapter 5—that this Ready column would be
displayed on a CFD while the backlog would not.

We implicitly stated a couple of policies here, so let’s
make those policies explicit. First, we have said that
work items are only considered to have arrived into

Chapter 7 - Conservation of Flow Part I 119

our system once they are placed onto our “arrivals”
column (the “Ready” column in Figure 7.1). Second, this
arrivals column will have a WIP limit on it and that
we will only pull new work into the system when that
WIP limit signals that we have capacity to do so. And
third, since work can only arrive via this first column,
the downstream steps of our process can only consider
pulling work from there.

Since what we are ultimately looking for is an un-
derstanding of the rate of arrivals into the system, then
measuring that rate now simply becomes a matter of
counting the number of new work items placed onto
that arrivals column per unit time. The unit or interval
of time you choose is completely up to you (day, week,
every two weeks), but one thing you must keep in mind
is that the unit of time you choose tomeasure the Arrival
Ratemustmatch the unit of time that you choose tomea-
sure your Departure Rate (I will discuss Departure Rate
shortly). Thus, if you measure Arrival Rate in weeks,
then you should also measure the Departure Rate in
weeks.

A very subtle but very important point to note here
is that choosing the same interval of time to measure
arrivals and departures does not mean that the cadence
of arrivals and departures must be the same. For ex-
ample, your team could choose to deploy to production
at a cadence of every two weeks, but could also choose
to replenish the input column every week. Not only
is staggering cadences like that perfectly acceptable, it
might be optimal given your specific context. However,
it makes comparing Arrival Rates and Departure Rates
slightly more complicated. If your Throughput data is in
terms of two week intervals and your arrival data is in
terms of one week intervals, then you will have to do
some conversion to get them to the same unit of time.

Chapter 7 - Conservation of Flow Part I 120

Whether you choose to convert Throughput data from
two week periods to one week periods or whether you
choose to convert arrival data from one week to two
week periods is completely up to you. Just know that
whatever unit of time you choose for your reporting
must be consistent across all metrics. It will be an inter-
esting and important exercise for you to figure out the
optimal reporting interval for your specific context.

Defining Departures

In a similar fashion, we are going to need to establish
a clear, unambiguous departure point for our system.
Items that pass this point do not necessarily have to be
visualized—though most teams do choose to dedicate
space on their board for departures—but they do need
to be counted. If the departure column is visualized,
then you will normally see it with the title “Done” or
“Deployed” or the like. Typically speaking, if a team
chooses to represent the departures column on their
board, then it will not have aWIP Limit on it. Regardless
of the visualization employed, it is important to define
the exact point of the systemwherework departs, (hope-
fully) never to return. For example, this could be the
point where we deploy code to production or the point
at whichwe hand an item off to a downstream team (see
Figure 7.2).

Chapter 7 - Conservation of Flow Part I 121

Figure 7.2: Items that have departed from the system

In Figure 7.2, the demarcation line between “in our
process” and “not in our process” is the line that sep-
arates the “Test” column from the “Deployed” column.
More importantly, the expectation here is that the team
has put in place a set of policies for what it means for
items tomove fromTest toDeployed, and that once those
items are in Deployed, they no longer count against the
capacity of the team; i.e., they no longer count as WIP.

Measuring the rate of departures from the system
is exactly the same as measuring the rate of arrivals.
We simply count the number of work items placed into
Deployed (that have “crossed the line” so to speak) per
unit of time. Again, the unit or interval of time is not
important, only that youmatch your departures interval
to your arrivals interval as discussed above.

Once you have tracked your Arrival and Departure
Rates for an arbitrarily long period of time (though
the amount of time needed for “good” data might be
much shorter than you think—perhaps as little as a
few weeks), then you can average those two rates and
compare them. If those two averages come out to be the

Chapter 7 - Conservation of Flow Part I 122

same, then you are in good shape. My guess, though, is
that your two average rates will be different. I am going
to discuss what that difference means and some actions
to take to correct them in a minute, but first I would like
to talk about a better method for performing the above
analysis.

Arrivals and Departures on a CFD

There is a much better way to visualize whether the
Average Arrival Rate equals the Average Departure Rate
for your system. This better method is to perform the
preceding analysis using a Cumulative Flow Diagram.

Let’s suppose we are running a Kanban board that
looks like the one in Figure 7.3:

Figure 7.3: Example Kanban Board

Note that this particular team has chosen to name
their arrivals column “Input”, and that they have limited
that column to five work items in progress at a time.
Note also that the team has chosen to display the depar-
tures column and that they have labelled that column
“Done”. This departures column is WIP unlimited and
the implication is that they have put in place explicit
policies for what it means for items to be moved from
“Test” to “Done”.

So what might a CFD look like for a board like this? It
might look like the one shown in Figure 7.4:

Chapter 7 - Conservation of Flow Part I 123

Figure 7.4: An Example CFD

From Chapter 4, we know that each layer of this CFD
represents a step in the workflow of the Kanban board
shown in Figure 7.3. We also know that the slope of
the top line of the topmost layer represents the Arrival
Rate of the process and the slope of the top line of
the bottommost band represents the Departure Rate (or
Throughput). You can see from Figure 7.4 that those
rates have been calculated to be 3.72 items per day
and 2.74 items per day for the Arrival and Departure
Rates, respectively. This calculation tells us that items
are arriving to the process faster than items are leaving
the process at about the rate of one item per day. What
might the implications of this situation be?

The nice thing about CFDs, however, is that we need
not necessarily perform this quantitative analysis to see
that something is going wrong with our system. CFDs
are such a powerful visualization technique that we can
quite quickly do a qualitative assessment of the health
of our system.

For example, imagine you had CFD that looked like
the one in Figure 7.5:

Chapter 7 - Conservation of Flow Part I 124

Figure 7.5: Quick Qualitative Assessment of CFD

It would not take you long to figure out that there
was something wrong with your process. In this pic-
ture it is quite obvious—without doing any quantitative
analysis—that work is arriving into your system at a
much faster rate than work is departing from you sys-
tem. A few paragraphs ago I asked you to think about
the implication of this particular situation. To answer
that question we need to reexamine howWIP and Cycle
Time are visualized on CFDs. From Chapter 5, we know
that WIP is the vertical distance between arrivals and
departures and that Approximate Average Cycle Time
is the horizontal distance between arrivals and depar-
tures. These properties are summed up in Figure 7.6:

Chapter 7 - Conservation of Flow Part I 125

Figure 7.6: Flow Metrics on a CFD

But look what was going on earlier on in this dia-
gram. When the Arrival Rate and Departure Rate lines
were much closer together, you can see that WIP was
much smaller and Approximate Average Cycle Times
were much shorter. As arrivals continued to outpace
departures—as the arrival line diverged from the depar-
ture line—the amount of WIP in the system got larger
and larger and the Approximate Average Cycle Times
got longer and longer (as shown in Figure 7.7).

Chapter 7 - Conservation of Flow Part I 126

Figure 7.7: The Implication of Arrivals faster than Departures

In a situation like this, you have almost no chance
at predictability. The actionable intervention suggested
by a CFD that looks like Figure 5.5 is that we must get
arrivals to match departures.

So how exactly do we get arrivals to match depar-
tures? The first thing we would do is to calculate the
average Throughput off of the diagram. Let’s say, for
argument’s sake, that we deploy items off our process
at a cadence of once per week. Let’s additionally say
that the average Departure Rate of those deployed items
comes out to five items per week (note here that we
are choosing “week” as our unit of time). That number,
five, gives us a clue as to what the WIP limit should be
on our arrivals column. Since we are finishing five old
items per week, that means we only want to start five
new items per week. The implication here being that we
would want to set a WIP Limit of five on the arrivals

Chapter 7 - Conservation of Flow Part I 127

column (depending on the variability of our system, we
might want to make that WIP Limit a little larger—say
six or so—to make sure that our system is never starved
for work). An important subtlety here is that the WIP
Limit of five on the arrivals columnassumes that you are
replenishing the arrivals column at the same cadence
as which you are deploying; i.e., once per week. But
remember from before, that this need not be the case.
If you wanted to replenish the input column once a day,
then you would need to divide the original Arrival Rate
number, five, by the number of times per week that you
would do the replenishment (in this case five). Since five
divided by five is one, then your new WIP limit on the
arrivals column would be one.

Properly setting theWIP limit on the arrivals column
will allow you tomatch the average Arrival Rate of items
into your system with the average Departure Rate of
items out of your system. When we do this, we will get a
CFD that looks something like Figure 7.8:

Chapter 7 - Conservation of Flow Part I 128

Figure 7.8: Average Arrival Rate equals Average Departure Rate

It should be immediately obvious from looking at
the CFD in Figure 7.8 that the situation here is much
better than that illustrated in Figure 7.5. As we will see
in a subsequent chapter, having a pretty CFD is not a
guarantee of a healthy system, but it is certainly a pretty
decent start.

By theway, any timeyou expressly limitWIP through-
out your workflow, and, more importantly, any time
you honor the WIP limit(s) you have set, you will get
a picture that looks like Figure 7.8. What I am saying
is that you must operate a constant WIP style of pull
system. Setting a WIP limit on the arrivals column is a
necessary—but not sufficient—means to balancing ar-
rivals and departures. For example, imagine that we
have no explicit limit on our Test column but that we
do have a WIP limit on the arrivals column. As work
gets pulled (pushed, really) into Test because of the lack
of a WIP limit, then that action will ultimately cause

Chapter 7 - Conservation of Flow Part I 129

a pull of work from the arrivals column. Work getting
pulled from the arrivals column will signal to the world
that there is capacity to start new work and thus the
arrivals column will be replenished even though no
work has been completed. I hope it is easy to see that
in this scenario how we can have items that arrive to
our system faster than items that depart our system.
So do not think your work is done by just limiting WIP
at the front of your process. You must make sure that
a constant amount of WIP (on average) is maintained
throughout the whole process. Remember, the further
you stray away from this principle, the less predictable
you will be.

Limiting WIP on the arrivals column in the manner
described here is one way to ensure that not too much
work is started and just queuing at the beginning of your
process. I have said it before, and Iwill say it again: delay
is the enemy of flow. This approachwill ensure a proper
balance between having enough work to start such that
your process is not starved and not having too much
work such that work begins but just sits.

By the way, once we get a picture that looks like Fig-
ure 7.8, we will have taken the first—and probably most
important—step to balance the demand on your system
against the supply that your team can offer. We are now
very far down the path to true process predictability.

Most Kanban boards have an explicit arrivals col-
umn at the front of the process, but this is by no means
a requirement. It is completely reasonable that your
particular work context allows your team to pull new
work items in an immediate, ad hoc manner. That is to
say, you need no coordination with any external stake-
holder to prioritize items or you have a proxy for those
stakeholders embedded with your team. In this case the
arrivals column (e.g., the “To Do” or “Input” or “Ready”

Chapter 7 - Conservation of Flow Part I 130

column) may be superfluous. This situation is perfectly
ok. As I just mentioned, the way to match arrivals to
departures in this context would be to make sure that
a constant amount of WIP is maintained through the
process at all times. Constant WIP could be maintained
either by expressly limiting Work In Progress at each
step of your work flow or by setting one global limit for
the whole process (or some mixture of both). The point
I am making here is that it does not really matter how
you limit WIP throughout the whole system just as long
as you do.

It should be said, though, that even in this partic-
ular situation a team could benefit from an arrivals
column for many of reasons. Just know that an explicit
arrivals column is neither prescribed nor required for
predictable process design.

Conclusion

When you have a picture that looks like Figure 7.5 then
your process is, by definition, unpredictable. The direct
consequence of anArrival Rate that exceeds aDeparture
Rate is a steady—if not dramatic—increase in WIP. Lit-
tle’s Law tells us that an increase inWIPwill bematched
by an increase in Cycle Time. The implication here is
that if WIP grows unbounded, then Cycle Time will also
essentially grow unbounded. If your Cycle Time is ever-
increasing, then it becomes impossible to answer the
question, “how long before this work item will done?”

In this chapter, I have purposefully not made any
mention of how teams choose what particular items go
on to the arrivals column at replenishment time. Nor
have I made any mention of the order in which items
should be pulled through the system once they have

Chapter 7 - Conservation of Flow Part I 131

been placed on that column. These are very important
questions and deserve ample consideration. The reason
I have left those questions unanswered—for now—is
that this chapter is simply about the mechanics of the
first necessary step you need to take in order to stabilize
your system and thus have any hope of predictability.
Little’s Law assumption #1 states that the average Ar-
rival Rate to a systemmust equal the average Departure
Rate of the system. I have shown you how to do that
here. The answers to the replenishment and pull order
questions will be addressed in the coming chapters.

I would argue that the arrivals column is one of—
if not the most—important columns for your process
design. In this chapter we have explored two very im-
portant reasons why this might be so:

1. The arrivals column acts as the throttle by which
we constrain the amount of work that can arrive to
our system at any given time. It is the mechanism
by which we match the rate of arrivals in our
process to the rate of departures. The matching
of these rates is what is going to yield process
predictability. And,

2. The arrivals column acts as our “commitment”
point to start newwork. The implication being that
when new work is committed to, we expect it will
flow completely through the process and depart
the system. It is only when work departs our sys-
tem that customer value can truly be recognized
and our predictability be assessed.

In the real world, work item Cycle Times are not
allowed to grow ad infinitum. Projects get cancelled and
features get abandoned when they take too long to com-
plete. This compounds the problem fromapredictability

Chapter 7 - Conservation of Flow Part I 132

perspective because not only is your Cycle Time not
predictable, but now you cannot even be certain if a
certain item that is started will ever finish. Items that
start but never finish is yet another a violation of an
assumption of Little’s Law (do you remember which
one?) that carries its own impacts on predictability. An
exploration of that violation is where we will go next.

Key Learnings and Takeaways

• Little’s Law assumption #1 says that the average
input or Arrival Rate of a process should equal the
average output or Departure Rate.

• Any predictable process needs a clear, unambigu-
ous point at which it considers items to have “ar-
rived”.

• Any predictable process needs a clear, unambigu-
ous point at which it considers items to have “de-
parted”.

• One of the best ways to visualize whether arrivals
and departures are balanced is to visualize them
via a CFD.

• To balance arrivals and departures is going to re-
quire limiting WIP not only at the arrivals column
but also through the whole process.

• Once arrivals and departures are balanced, you
have taken the necessary first (emphasis on first)
step toward process predictability.

• Pretty CFD pictures could still mask underlying
process problems.

Chapter 8 - Conservation of
Flow Part II
I have never been skydiving, but I get the general gist.
First, youpack abunchof nylon into a little bag and strap
that bag to your back. Then, you hop onto an airplane
and fly up to a specified altitude. Finally, assuming you
are insane, you jump out.

Other than the immediate commencement of a real-
time experiment of Newton’s Second Law of Motion, a
very important thing happened to you once you jumped
out of that airplane. Once outside the plane, you made a
very real commitment to fall back down to the ground.
Up until the moment of stepping off the plane, you had
every opportunity to not make that commitment. You
could have checked your parachute and found it was
not packed properly. The plane could have not taken
off due to bad weather. You could have decided not
to jump because you were too scared. Any number of
factors could have contributed to you not making that
commitment.

Also notice that this commitment happened at the
last responsible (possible) moment. Your jumping out of
that airplane was a clear and unambiguous signal that
you intended to fall back to earth.

Which brings us to my last point. Once outside the
plane, you had every expectation that you were going to
make it all the way down to the ground. The instant that
you jumped it would take nothing short of an act of God
to not get you back down to earth.

Whether you knew it or not, what you had just ex-

133

Chapter 8 - Conservation of Flow Part II 134

perienced in this situation was a perfect example of the
secondpart of the Conservation of Flow (CoF). In the pre-
vious chapter, we discussed the first part of CoF, which
also happened to be one of the necessary assumptions
for Little’s Law to work. In this chapter we will discuss
the second part of CoF, which, as it so happens, is also
one of the foundational assumptions of Little’s Law:

Little’s Law Assumption #2: All work that
is started will eventually be completed and
exit (depart) the system.

The great benefit of implementing a pull system is
that it is very easy to define what it means for work
to have “started”. A subtle side benefit that I have not
talked much about until now is that pull systems also
allow for us to perform just-in-time prioritizations and
just-in-time commitments. It turns out that just-in-time
prioritizations and just-in-time commitments are going
to help us conserve flow.

Just-in-time Prioritization

I cannot tell you howmany teams I have watched waste
so much time, grooming, pruning, and re-prioritizing
their backlogs. The truth is that the effort spent to main-
tain a backlog is waste. It is waste because the truth is
that much of what goes into a backlog will never get
worked on anyway. Why spend time prioritizing items
that youhave no clue nor confidence if orwhen theywill
ever get worked? Worse, when you are ready to start
new work, new requirements will have shown up, or
you will have gained new information, or both, which
will require awhole reprioritization effort andwill have
rendered the previous prioritization activities moot.

Chapter 8 - Conservation of Flow Part II 135

Enter the concept of just-in-time prioritization. In a
pull system, a prioritization conversation only happens
when there is a clear indication that the team has capac-
ity to do new work.

For example, let’s look at a Kanban board (Figure 8.1)
not unlike the one we discussed in the previous chapter:

Figure 8.1: Just-in-time Prioritization

Notice that in Figure 8.1 the “Ready” or arrivals
column has a Work In Progress limit of six. That means
that the capacity of this process is such that a maximum
of six new items can be started at any given time. What
should this team do when they try to decide how many
items to work on next? As they look at the board, they
will see that there are already four items in the Ready
column. Since the column already has four items in it,
and since the WIP limit on the column is six, this means
that the process is unambiguously signaling that the

Chapter 8 - Conservation of Flow Part II 136

team only has capacity to start work on two new items.
The prioritization conversation (i.e., which items should
they choose) should then be focused only on “what are
the next two most important items that we should start
at this time?” Any discussion beyond deciding on just
those two items is waste (e.g., having a conversation,
say, about prioritizing the top ten items). Why? Because
by the next time the team meets to replenish the Ready
column, there will have been several things about the
business environment that could have changed: busi-
ness needs, customer feedback, regulatory concerns,
etc. These changing factors will constantly feed new
requirements the team’s way and these continuously
changing business needsmeans that the best strategy for
prioritizing new work is in a just-in-time manner.

This just-in-time prioritization concept is true even if
you are running what you assume to be a stable project.
As you finish some project requirements, you will have
gained knowledge about the problem domain. You will
have gained that knowledge both through your own
analysis and development efforts, but also through the
feedback you get from regularly scheduled reviewswith
your customers. This newfound knowledge is bound to
result in changes in your to your backlog—which, again,
would warrant a just-in-time approach to the prioritiza-
tion of work.

Just-in-time Commitment

Once prioritized and placed on the Kanban board, there
is also an explicit understanding that the new work
items are nowcommitted to. In a pull system,work is not
“committed to”when it is placed in the backlog! It is only
committed to in a just-in-timemanner as determined by

Chapter 8 - Conservation of Flow Part II 137

the team’s explicit capacity.
But what do I mean by the word “commitment”?

First, I mean commitmentwith a small “c”. There should
be no severe penalty for missing a commitment. No one
should get fired. No one should lose their bonus or be
denied a pay raise. Butmake nomistake. I domean com-
mitment. Once agreed to, I domean that the team should
do everything in its power to meet its commitments.

Second, commitment means that there is an expec-
tation that, once started, an item will flow all the way
through the process until completion. In other words,
there is a commitment that flow will be conserved.

Lastly, commitment means communicating to our
customers a Cycle Time range and probability for the
committed-to item. Remember that once we commit to
startwork, the customer’s first questionwill be “When is
it going to be done?” This point of commitment is when
we answer that question.

Allowme to further explain the three aspects of com-
mitment by way of example. The placement of a work
item in the Ready column means that the item has been
both prioritized and committed to. This commitment
means that all reasonable effort will be undertaken to
make sure the itemwill flow all theway through the pro-
cess to completion (just like in the sky diving example).
It also means that a communication will be made to our
customers regarding how long it should reasonably take
that particular item to complete. That communication
should take the form of “we expect this item to flow
all the way through the process and exit in 14 days or
less with an 85% probability of success”. Many of you
will recognize this as the language of “Service Level
Agreements” or SLAs in Kanban. More on just what
exactly SLAs are and how to set them for your process
can be found in Chapter 12.

Chapter 8 - Conservation of Flow Part II 138

Not to get too off-topic here, but I hope this dis-
pels another common myth I hear about flow-based
systems, and in particular, Kanban. I often hear, “Kan-
ban cannot work because there are no commitments”.
Nothing could be further from the truth. It is just that
the approach to commitments is very different than,
say, Scrum. Scrum commitments are made at the sprint
level. At the beginning of a sprint, a team commits to
getting somenumber of stories finished by the end of the
sprint. That commitment is based more on upfront esti-
mation and planning. In a flow-based approach, teams
commit at the individual work item level. Once an item
is pulled into the process a commitment is made as to
when that item should be done. That commitment is
based more on measurement and observation rather
than planning and estimation. The point here is not
to denigrate Scrum, but to get you to think about—
especially if you are using a method like Scrum—how
you might incorporate more flow-based principles into
your current process.

Exceptions to Conservation of Flow

As with all of these “rules”, there are always exceptions.
There might be—and probably are—perfectly good rea-
sons to discard work that is only partially completed.
Maybewe have gained some knowledge thatmakes con-
tinuing to work on these particular items unnecessary,
duplicative, or otherwise wasteful. Well, obviously, in
those circumstances it makes perfect sense to abandon
that work. When this happens, though, we should chal-
lenge ourselves with the following questions: “Why did
that happen?” “Was there something that we could have
done further upstream in our process to help avoid this

Chapter 8 - Conservation of Flow Part II 139

situation?”
But, potentially more importantly, when these ex-

ceptions occur it is absolutely necessary to account for
them properly in your data. Instead of just removing (or
deleting) an item from your board never to be tracked
again, it is probably best to mark that item as “finished”
(whatever that means in your context), mark the date
it was done, and then tag it with some attribute like
“abandoned” or “discarded”. In that way, wewill be able
to filter on that attribute later. You’ll remember that I
have spoken many times before about segmenting WIP
based on different types. Well, one of those types might
be work that has completed normally or not.

For example, let’s say we have a board that looks
like Figure 8.1. Let’s further say that we start some
work item and get it all the way to the “Development”
column before we decide we do not need this particular
functionality. In this case, the item should immediately
be moved to the “Deployed” column, the current date
should be captured, and the item should be tagged as
“abandoned”—or with whatever other descriptor you
choose to use.

Annotating an item in this way gives us several op-
tionswhenwe go to generate our analytics later. You can
imagine that we may want to generate several different
views of a CFD for our exception cases. We may want to
see all data together, wemaywant to only see items that
have finished normally, orwemaywant to just see those
items that were abandoned. Further, by accounting for
these abandoned work items in this way, not only have
we not violated the principle of the CoF, but we can also
guarantee that we will be able to generate a valid CFD
for all of those views.

A violation of the principle of conservation of flow
should be treated as an opportunity for learning. Hope-

Chapter 8 - Conservation of Flow Part II 140

fully, your new-found understanding of this principle
helps you to more readily recognize these learning op-
portunities and is yet another tool for you in your tool-
box of continuous process improvement for predictabil-
ity.

Conditioning Flow and Predictability

I just mentioned that part of the definition of commit-
ment is that a team should do everything in its power
to assure that once started an item completes and it
completes in the timeframe that has been communi-
cated to the customer. “Everything in its power” means
first choosing a Cycle Time range and probability that is
achievable. It also means doing what we can to choose
items that have the best chance ofmeeting that goal. This
idea of selecting items for success is a concept that I like
to refer to as “Conditioning Flow”.

Let me give you a few examples. Let’s say that we
are operating a process that is currently overloaded in
Test. Let’s further say that the next highest priority item
that we wish to pull in off the backlog (though it has not
been pulled in yet!) has a large amount of testing effort
associated with it. But the second highest priority item
has little to no testing effort associated with it. All other
things being equal, we should probably pull the second
priority in preference to the first priority. That is the
concept of conditioning flow.

There are several other examples of this. Let’s say
the next highest priority to be pulled off the backlog
requires a specific resource, but we know that that par-
ticular resource is going to be going on vacation for
severalweeks starting in twodays. Obviously itwouldn’t
make sense to pull that item in, work on it for two days,

Chapter 8 - Conservation of Flow Part II 141

and then block it while our expert is on vacation.
One last example might be that the team is in dis-

agreement aboutwhether the next priority item is of the
right size to come into the system (right-sizing of work
items will be discussed in Chapter 12). That disagree-
ment probably stems from some uncertainty around the
work item somaybewhat the team decides to do is spike
the story and pull that spike in first (by “spike” I mean
a work item—user story—that is used to drive out risk
and uncertainty in another work item).

Remember, we have control over a lot of these de-
cisions. Making the best choices in these circumstances
is usually the difference between whether our process
is predictable or not. Conversations around condition-
ing flow are among the most important as they speak
to what items are committed to next. Because we are
talking about commitments and predictability here, we
want to make sure that we are setting ourselves up for
success from the very first pull transaction. We want to
do what we can to condition our flow.

Conclusion

Whether you realized it or not before now, every time
you started a piece of work (be it a project, a feature,
or story) but then later abandoned it you violated the
principle of Conservation of Flow and thus impaired
your predictability. If work flows only part way through
the system and gets kicked out or discarded—for what-
ever reason—then any effort that was expended on the
eliminated item immediately becomes waste. Taken to
its logical conclusion, you can understand why a team
might want to conserve flow as much as possible. If
work is constantly started but never finished, if this

Chapter 8 - Conservation of Flow Part II 142

partially completed work is constantly discarded in fa-
vor of starting new work, then the Cycle Time metrics
are going be skewed, and the system you are operating
becomes infinitely unpredictable.

Of course, we live in the real world and these things
are going to happen. Somemight argue—and I certainly
would not debate them if they did—that it is even more
waste to continue to work on an item once we have
gained information that the item is no longer necessary.
By all means trash that work in those instances. How-
ever, just remember to account for that action appro-
priately in your data. Taking the time to do the proper
accounting will pay huge predictability dividends later.

The idea of matching the arrival rate of your system
to its departure rate, and the idea of making sure that
flow is conserved for all items that enter your system
go a long way to stabilize what would otherwise be
considered an unstable system. When we have taken
these steps we can now start to have some confidence
that the metrics we are collecting off of our system are
more reflective of a team’s true capability. However,
doing these two things alone still does not guarantee
that our system is completely stable. It is this underlying
sense of system stability that we need in order to reach
one of our ultimate goals—a goal that I keep harping on
throughout this text: predictability.

For the final piece of our stabilization problem, we
must borrow some ideas from someone who—like most
great thinkers—was not truly appreciated in his time.

Key Learnings and Takeaways

• Little’s Law assumption #2 says that all work that
is started will eventually be completed and exit the

Chapter 8 - Conservation of Flow Part II 143

process.
• The concept that no work gets lost or does not ever
exit the process is the second half of a concept
known as the Conservation of Flow.

• To set ourselves up properly so as not to violate
CoFwe need to implement a just-in-time prioritiza-
tion and just-in-time commitment strategy (these
strategies are direct consequences of putting in
place a pull system).

• In knowledgework, commitmentmeans two things:
– That once committed to, work will flow all the
way through our process to completion.

– That part of the commitment is a communi-
cation of an expected Cycle Time range and
probability for a given item to complete.

• To not violate the Conservation of Flow, we need
to account properly for items that have started but
later get abandoned.

• Another benefit of accounting properly for aban-
doned items is that we can later filter our analytics
on that data and help guarantee that the charts are
built correctly.

• Conditioning flow means being smart about what
items to pull in next based on contextual informa-
tion that we currently have.

Chapter 9 - Flow Debt
HymanMinski may be the best economist that you have
never heard of. Among other things, he is known for
his work on classifying debtors based on the types of
financing they used when taking on their debt. Minski’s
theorywas that borrowers could be categorized into one
of three groups: hedge, speculative, and Ponzi. Hedge
borrowers are those who can service both the principal
and interest on their debt. Speculative borrowers can
only pay the interest on their debt. And Ponzi borrowers
have to constantly issue new debt in order to service the
old.

Why am I telling you all this? To answer that question
we must return to our old friend, the CFD. Specifically,
recall CFD Property #4:

CFD Property #4: The horizontal distance
between any two lines on a CFD represents
the Approximate Average Cycle Time for
items that finished between the two work-
flow steps represented by the chosen two
lines.

When you first read that, I am sure that most of
you were thinking (and maybe still are) that being able
to calculate only an Approximate Average Cycle Time
was absolutely worthless. After all, why would you ever
waste time measuring an Approximate Average Cycle
Time from a CFD when you can just go and directly
compute an exact Average Cycle Time from the chart’s
real, underlying data?

144

Chapter 9 - Flow Debt 145

While those are good questions, I would argue that
knowing the CFD’s Approximate Average Cycle Time is
extremely valuable. To understandwhy, wemust revisit
Little’s Law Assumption #4:

Little’s Law Assumption #4: For the time pe-
riod under consideration, the average age
of WIP should neither be increasing nor de-
creasing.

The Approximate Average Cycle Time as predicted
by the CFD can be compared to the exact Average Cycle
Time as calculated from the very data used to build the
CFD to begin with. The comparison of these two num-
bers will tell us if we can expect our exact Average Cycle
Time to grow, decline, or stay the same over time. If our
exact Average Cycle Time is either growing or declining
then we have a violation of Little’s Law assumption #4
which means that our predictability is in jeopardy.

So what are the scenarios we need to consider when
comparing Approximate Average Cycle Time to exact
Average Cycle Time? It turns out there are three. Those
scenarios are:

1. The Approximate Average Cycle Time is greater
than your actual Average Cycle Time.

2. The Approximate Average Cycle Time is less than
your actual Average Cycle Time.

3. The Approximate Average Cycle Time is roughly
equal to your actual Cycle Time.

It may sound trite, but an easy way to remember
which of these is best is “scenario three is where you
want to be.” But it is because both scenarios one and
two put predictability at risk that we will begin our
discussion with those.

Chapter 9 - Flow Debt 146

Approximate Average Greater Than
Actual Average

If the Approximate Average Cycle Time is greater than
the exact Average Cycle Time, then you can conclude
that your process is incurring what I would call “Flow
Debt”.

Flow Debt is when Cycle Time is artificially
reduced for some items of Work In Progress
by “borrowing” Cycle Time from other items
of work in progress.

To explain, a smaller exact Average Cycle Time cal-
culation when compared to the approximate average
would tell you that you have (either explicitly or implic-
itly) favored the faster completion of some work items
over the regular completion of others. Youwere not able
to conjure that shortened Cycle Time out of thin air (we
are not like the Fed who can just print money). This new
ability to complete some items faster than they normally
would have finished must have come from somewhere.
What you did—whether you knew it or not—was to bor-
rowCycle Time fromotherwork items thatwere already
in progress. What you did was to create Flow Debt. This
debt was used to pay for the expedited completion of the
preferential work.

One great example of a process taking on Flow Debt
is when a system has been designed with an expedite
lane. A simple example of what an expedite lane looks
like on a Kanban board is shown in Figure 9.1:

Chapter 9 - Flow Debt 147

Figure 9.1: Expedite Lane Example

When used, most expedite lanes have an extremely
low WIP limit on them (often set to one). Policies are
also usually put in place such that items in expedite
lanes can violateWIP limits at each step in theworkflow.
Further, most systems are designed such that when an
expedite item is introduced, it is pulled immediately for
work—it is allowed to “jump the queue” ahead of other
work that is also ready to be pulled. If no resources
are available to immediately pull the expedited entity,
then many teams will block other items to free up team
members to go act on the expedited work. Given these
normal policies, you can see why it is so important to be
extremely conservativewhen setting theWIP limit on an
expedite lane (more information about expedited items,
pull policies, and their effect on predictability, please see
Chapter 13).

Looking at Figure 9.1, you will notice that the WIP

Chapter 9 - Flow Debt 148

Limit for the expedite lane is indeed set to one. This
means that only onework item can be in progress in that
whole lane at any given time (but that work item can
be anywhere in the lane: Ready, Design, Development,
or Test). As you can also see, the expedite WIP limit
has been adhered to and that the expedite item is in
the Development column. Let’s assume for a minute
that no developers were available when this item was
pulled into the Development step. What might happen
is that the team would choose to block one (or more) of
those other three items in progress in order to free up
resources to go work on the expedited ticket. The team
has chosen to take the time that was to be allocated for
work that was already in progress and apply that time
to the expedited item. What has happened is that the
team has chosen to artificially age one item (or more)
in order to shorten the Cycle Time of another. This is a
classic example of the creation of Flow Debt.

The problem is that this debt must be repaid (think
the Mafia here and not the U.S. Government). The pay-
ment of this debt will come in one of two ways:

1. The work items that were “passed over” in defer-
ence to the expedited items will eventually them-
selves complete (in accordance with the princi-
ple of Conservation of Flow). When they do com-
plete their Cycle Times will be much longer than
they normally would have been because theywere
forced to artificially age. Thus, debt repayment
comes in the form of longer Cycle Times for items
already in progress. The resulting consequence is
that you can have no confidence in the “average”
Cycle Time you thought you were capable of be-
cause themetrics you had collected did not include
this debt. You can have no confidence in this aver-

Chapter 9 - Flow Debt 149

age because the accumulation of debt has made it
invalid; or,

2. The work items that were “passed over” will be
eventually kicked out of the system because they
are no longer considered valuable (in violation of
Conservation of Flow); i.e., the window of time to
realize their value has passed. When these items
are thrown out of your process, any effort or time
that has been spent on progressing them through
the system immediately becomes waste. Thus, the
payment of Flow Debt is the wasted effort that
could have been spent in realizing the value of the
discardedwork itemor in the formofwasted effort
that could have been spent realizing the value of
something else.

Either way, Flow Debt is repaid in the form of less
predictability for your process.

I do not want you to conclude that all Flow Debt is
bad. What you need to do is simply recognize that your
system is incurring debt. The challenge for you, then,
is to think about how you might categorize your bor-
rowing into one of Minski’s types: Hedge, Speculative,
or Ponzi.

To classify what type of debtor you might be, ask
yourself the following questions:

1. Hedge: Are expedites in your process more the
exception than the rule (that is to say, does your
board not have expedites significantly more often
that it does have expedites)?When you do have ex-
pedited requests, do you truly only ever have one
item (or some WIP limited amount of expedited
items) in your process at a time? Does this time
with no expedited items give you an opportunity

Chapter 9 - Flow Debt 150

to finish work that was otherwise blocked for pre-
viously expedited items? When you get an expe-
dited item, are you allowed to finish existing work
before the expedite is picked up? If the answers
to these questions is yes, then you are probably
running a properly “hedged” system.

2. Speculative: Is there always at least one item in
your process and never a time when you are not
working on expedited work of some kind? Do you
routinely violate your expedited item WIP limit?
If the answers to these questions is yes, then you
are probably running a speculative systemand you
might want to explore some options to apply more
rigor to your expedite process.

3. Ponzi. Is all the work you do considered an expe-
dite? Do expedited items take up all of your avail-
able capacity such that you never get a chance to
work onmore “normal” items? Are your pull crite-
ria based not on explicit policies but on whomever
is screaming the loudest? If the answer to these
questions is yes, then what you are really running
is a process Ponzi scheme. Youwill never be able to
repay the debt you have accumulated and any no-
tion of total process predictability is gone. You are
fooling yourself if you continue to start “normal”
work in addition to expedited work in this world.
That normal work will almost never complete, or
it will swapped out for other work, or it will finish
far too late for anyone to care. In my mind, this is
the antithesis of flow.

I want to make sure that you know that I am not
advocating that you spend a lot of time on this clas-
sification nor that you become an expert in economic
theory. What I do want you to ask yourself is are you

Chapter 9 - Flow Debt 151

able to repay the debt that you are taking out? How
much debt is reasonable in your context? I guarantee
that there are going to be some very good reasons to
take on “Hedge” Flow Debt from time to time (a great
analogy to this in the real world is when prospective
homeowners take out a mortgage—assuming they can
be repaid, most mortgages are considered good debt).
The question for you becomes: are you able to service
the Flow Debt that you have taken out?

By the way, I have picked on expedite work items
here, but it should be noted that an explicit expedite lane
is not the only way to incur Flow Debt.

Extending the scenario from above, let’s say that you
have an item in the “Design Done” column. And let’s
say that that item just sits there and never gets pulled
into “Development Doing” because you care constantly
choosing to pull other items in preference to it. If so, then
congratulations, you have Flow Debt.

This particular scenario is depicted in the following
diagram (Figure 9.2):

Figure 9.2: Ignoring an ItemWhile it is Queuing

Another example of the creation of Flow Debt might
be if you have blocked items that you ignore or do not
actively work to get unblocked and moving again as
quickly as possible (Figure 9.3):

Chapter 9 - Flow Debt 152

Figure 9.3: Ignoring a Blocked Item

I am sure there are other examples, but I will leave
it as an exercise for the reader to identify the types of
Flow Debt in your context.

By the way, the concepts in this chapter can be ap-
plied to any type of debt that you may incur in your
process (e.g., technical debt). The trick is to recognize
that you are creating debt and have a constructive con-
versation about how that debt is going to be repaid.

Approximate Average is Less Than
Actual Average

This scenario is a bit less interesting than the last one.
If in the above situation we were talking about accumu-
lating Flow Debt, then the case where the Approximate
Average Cycle Time on your CFD is less than your actual
Average Cycle Time means that you are paying off Flow
Debt (again, for the time interval under consideration).

A larger actual Average Cycle Time means that those
items that have—for whatever reason—languished in
progress are now finally completing. The actual aver-
age has become inflated because as the artificially aged
items complete theymake the actual average calculation
come out “larger” than it otherwise would have been
under normal circumstances.

However, paying off Flow Debt also hampers pre-

Chapter 9 - Flow Debt 153

dictability. Items that finish with large amounts of Flow
Debt attached to them skew Cycle Time numbers. An
increased variability in Cycle Time means that we must
communicate a larger range for the SLA of our pro-
cess (see the discussion in the previous chapter and
in Chapter 12). A good analogy of why this might be
dangerous is that of a restaurant who has customers
waiting to be seated. Imagine that the true wait time for
customers is fifteen minutes, but because of variability
in their seating process, the restaurant has to commu-
nicate a two hour wait time to arriving patrons. What
do you think those customers will do? The same thing
will happen in your own process. Themore your system
is unpredictable, the more your customers will begin to
look elsewhere for service.

Remember that these conclusions can only be drawn
assuming we are running an otherwise stable system
(i.e., nothing about the underlying system design has
changed materially).

Approximate Average Roughly Equal to
Actual Average

This case is where you want to be most of the time. If
your Approximate Average Cycle Time is approximately
equal to your actual Average Cycle Time, then your
process is probably performing in a fairly orderly, pre-
dictable manner. You are not overloaded with expedite
requests, you are not allowing items to stay blocked
indefinitely, and you are not allowing items to queue ar-
bitrarily. In other words, you are neither accumulating
nor repaying Flow Debt.

That is not to suggest that there are not any other
areas of your process that are unhealthy. And if you

Chapter 9 - Flow Debt 154

do find yourself in this situation, do not pat yourself
on the back too quickly. A more stable system such as
the one that you have just engineered requires constant
vigilance against the multitude of destabilizing forces
that present themselves every day.

How Different is Different?

So how different do my different average calculations
need to be in order forme to take action? Likemost ques-
tions in Kanban, the answer to this one is, “it depends”.
The conclusions you draw and the actions you should
take are highly context specific.

One reason this question is difficult to answer is be-
cause the Approximate Average Cycle Time calculation
is just that: an approximation. Therefore, some differ-
ence between the approximate and the actual is to be
expected. If the difference is about 10%, then you might
not get too excited. However, if the difference is 50%,
then thatmight be a pretty good clue to take action. Over
time you will get a very good feel for what constitutes
“different” in your world.

Conclusion

Are you running a process Ponzi scheme? Do you even
know?

If your process is unpredictable, one of the first places
to investigate is how much Flow Debt you are carrying.
Think aboutwhat process policies you canput in place to
restore some stability to your system. If you believe your
system is not “ponz-ified”, what process policies can you
institute to ensure that your process remains stable?

Lastly, I want to say that I have tried very hard to

Chapter 9 - Flow Debt 155

steer clear of using the term “Class of Service” (CoS) in
this chapter. Many of you will have figured out, how-
ever, that CoS is exactly what I am talking about. I
personally am not a big fan of the way CoS is nor-
mally touted in our Lean/Agile/Kanban community. To
be clear, I amnot a fannot because CoS is inherently bad,
but because most teams do not know how to implement
it properly—nor do they understandwhat this improper
implementation is doing to their system’s predictability,
performance, and/or risk management ability. Those
three goals, ironically, are usually the exact ones pro-
moted to justify the use of CoS.

Unfortunately, a deeper discussion of CoS and its
perils will have to wait until Chapter 13. That is because
I need to move on to the more pressing need of intro-
ducing the next of our flow analytics: the Cycle Time
Scatterplot.

Key Learnings and Takeaways

• Flow Debt is when Cycle Time is artificially re-
duced for somework items in progress by “borrow-
ing” Cycle Time from otherwork items in progress.

• Some examples of scenarios that lead to the cre-
ation of Flow Debt are:

– Classes of Service
– Blockers
– Other order of pull policies in place (whether
they are explicit or not)

• Comparing the Approximate Average Cycle Time
for work items on a CFD with the exact Average
Cycle Time for those work items (calculated from
the data) can give us an idea of whether Flow Debt
is being created or not.

Chapter 9 - Flow Debt 156

• When the Approximate Average Cycle Time on
your CFD is greater than your actual Average
Cycle Time then your process is accumulating Flow
Debt.

• When the Approximate Average Cycle Time is less
than your actual Average Cycle Time then your
process is paying off Flow Debt.

• When theApproximateAverageCycle Time is roughly
equal to your actual Cycle Time then your process
is stable from a Flow Debt perspective.

• Flow Debt leads to process unpredictability be-
cause by Little’s LawAssumption #2 thework items
that were allowed to artificially age eventually will
need to complete and leave the system. This arti-
ficial aging leads not only to longer overall Cycle
Times, but more variability in your Cycle Time
data.

PART THREE - CYCLE TIME
SCATTERPLOTS FOR
PREDICTABILITY

157

Chapter 10 - Introduction
to Cycle Time Scatterplots
I spent a lot of time in the last several chapters talking
about how Cumulative Flow Diagrams can give you a
good idea of how long it takes for items to flow through
your process on average. However, there are going to
be times when doing analysis based solely on average
is not going to be good enough (things like forecasting
a completion date come to mind, for example). Not to
worry because we can do much better than analysis
based on averages anyway. This is where Scatterplots
come in.

Scatterplots are a little less complicated than Cumu-
lative Flow Diagrams but that in no way diminishes
their usefulness. What diminishes their usefulness is,
again, the misinformation and disinformation that has
been published about them. In fact, my guess is that
until now you have probably not come across the term
“Scatterplot” in reference to Cycle Time analysis. Rather,
you have probably been told that you need to look at
your Cycle Time data in something called a “Control
Chart”. Not true. I will talk about why Control Charts
are really not all that useful in our domain a little later
(please note that Statistical Process Control will not be
covered at all in this book). For now do not get hung up
on confusing terms like “Control Chart”. There is amuch
simpler and better way.

But before I get into the explanation about how to do
basic quantitative andqualitative analysis using Scatter-
plots, I need to make one thing clear about how to read

158

Chapter 10 - Introduction to Cycle Time Scatterplots 159

this chapter. For this discussion I am going to focus only
on how to chart the flow metric Cycle Time on a Scat-
terplot. In reality you can put pretty much any metric
that you want to in a Scatterplot. You can put things like
Throughput, bugs per feature, work items per epic, etc.
For the purposes of this chapter, however, whenever I
say the word “Scatterplot” without any qualifier, what I
reallymean is “Cycle Time Scatterplot” (if youwould like
a refresher on how I am choosing to define Cycle Time,
then please revisit Chapter 2).

What is a Cycle Time Scatterplot?

Just as with the CFDs, it will first be beneficial to get a
basic understanding of a Scatterplot’s anatomy before
diving into what these charts can tell us.

If you have never seen a Cycle Time Scatterplot be-
fore, then one is displayed in Figure 10.1 for your refer-
ence:

Figure 10.1: A Basic Cycle Time Scatterplot

As you can see from Figure 10.1, across the bottom

Chapter 10 - Introduction to Cycle Time Scatterplots 160

(the X-axis) is some representation of the progression
of time. Like CFDs, the X-axis essentially represents a
timeline for our process. The tick marks on the X-axis
represents our choice of labels for that timeline. When
labeling the X-axis, you can choose whatever frequency
of labels you want. In this particular Scatterplot, we
have chosen to label every month. However you can
choose whatever label is best for your specific needs.
You can choose to label every two weeks, every month,
every day, etc.

I should point out that in Figure 10.1 I have chosen
to show the timeline progression from left to right. This
is not a requirement, it is only a preference. I could
have easily shown time progression from right to left.
I, personally, have never seen a Cycle Time Scatterplot
that shows time progression from right to left, but there
is no reason why one could not be constructed that way.
However, for the rest of this chapter (and this book), I
will show all Scatterplot time progressions from left to
right.

Up the side (the Y-axis) of your chart is going to
be some representation of Cycle Time. Again, you can
choose whatever units of Cycle Time that you want for
this axis. For example, you can measure Cycle Time in
days, weeks, months, etc.

To generate a Scatterplot, any time a work item com-
pletes, you find the date that it completed across the
bottom and plot a dot on the chart area according to its
Cycle Time. For example, let’s say awork item took seven
days to complete and it finished January 1, 2013. On
the Scatterplot you would go across the bottom to find
January 1, 2013 and then go up and put it a dot at seven
days. Recall that for CFDs you could choose whatever
time reporting interval you wanted to plot your data.
In a Scatterplot, however, there is really no concept of

Chapter 10 - Introduction to Cycle Time Scatterplots 161

a reporting interval. A dot is always plotted on the day a
given work item finishes.

Note that you could have several items that finish
on same day with the same Cycle Time. In that case,
you would simply plot the several dots on top of one
another. Hopefully whatever tool you are using to plot
your Scatterplot can handle this case, and, further, can
alert you to the instances where you have several dots
on top of each other. In the ActionableAgileTM Analytics
tool, we signify this situation by putting a little number
on the dot to show there is more than one work item
located at that point (as also shown in Figure 10.1).

Over time as you plot more and more work item
completions, a random set of dots will emerge on your
chart. The original diagram I showed you in Figure 10.1
is a good example of what I am talking about. So how do
we get useful information off of a chart that just looks
like a bunch of random dots?

Percentile Lines

The first thing that we can do to gain a better under-
standing of our process’s Cycle Time performance is to
draw what I would call “standard percentile lines” on
our Scatterplot. I should stress upfront that this stan-
dard percentile approach is only a starting point—you
will have every opportunity to change these percentiles
as you get a better understanding of your context. I
would argue, however, that these standard percentiles
represent a good enough place to start for most teams.

The best way to explain how to use standard per-
centiles on a Scatterplot is by example. I want to refer
you again to the chart shown in Figure 10.1. Looking at
this graph the first line that we could draw would be at

Chapter 10 - Introduction to Cycle Time Scatterplots 162

the 50th percentile of Cycle Times. The 50th percentile
line is going to represent the value for a Cycle Time such
that if we draw a line completely across the chart at
that Cycle Time, 50% of the dots on the chart fall below
that line and 50% of the dots are above that line. This
calculation is shown in Figure 10.2 below.

Figure 10.2: The 50th Percentile Line added to a Scatterplot

In this example the 50th percentile line occurs at
twenty days. Thatmeans that 50% of thework items that
have flowed through our process took twenty days or
less to complete. Anotherway of saying that is thatwhen
a work item enters our process it has a 50% chance of
finishing in twenty days or less (more on this concept a
little later).

The next line thatmight be of interest to us is the 85th
percentile. Again this line represents the amount of time
it took for 85% of our work items to finish. In Figure
10.3 you can see that the 85th percentile line occurs at
43 days. That means that 85% of the dots on our chart
fall below that line and 15% of the dots on our chart fall
above that line. This percentile line tells us is that when

Chapter 10 - Introduction to Cycle Time Scatterplots 163

a work item enters our process it has an 85% chance of
finishing in 43 days or less. This calculation is shown in
Figure 10.3 below.

Figure 10.3: The 85th Percentile Line Added to a Scatterplot

Another line we might want to draw is the 95th per-
centile line. As before this line represents the amount of
time atwhich 95%of ourwork items complete. In Figure
10.4 the 95th percentile line occurs at 63 days and tells us
that our work items have a 95% chance of finishing in
63 days or less. This calculation is shown in Figure 10.4
below.

Chapter 10 - Introduction to Cycle Time Scatterplots 164

Figure 10.4: The 95th Percentile Line added to a Scatterplot

The 50th, 85th, and 95th percentiles are probably the
most popular “standard” percentiles to draw. Other per-
centiles that you will see, though, could include the 30th
and 70th. Calculating those percentiles is exactly the
same as I have just demonstrated with the others. A
Scatterplot with all of these percentile lines is shown in
Figure 10.5 (note the 30th percentile is 11 days and the
70th percentile is 32 days):

Chapter 10 - Introduction to Cycle Time Scatterplots 165

Figure 10.5: 30th, 50th, 70th, 85th, and 95th Percentile Lines all
shown on a Scatterplot

I am sure you have noticed that as we increase our
level of confidence we have to increase the amount of
time it takes for work items to complete. This is due to
the variability inherent in our process. We will spend
a little bit of time talking about variability later in this
chapter. What we will see in that discussion is that no
matter how hard we try to drive it out, variability will
always be present in our system. But that is okay. It turns
out that we do need a little variability in order to protect
flow.However,whatwe are going towant to understand
is howmuch of that variability is self-imposed, and how
much of that variability is outside of our control. The
good news is that I will give you ways to identify each of
these cases and strategies with which to handle them.

As I mentioned earlier, drawing these standard per-
centile lines is a good start, but you can see that you can
easily add or subtract other percentile lines to your chart
as you see fit. Which lines to draw is mostly going to be
a function of what you want to learn from your data.

Chapter 10 - Introduction to Cycle Time Scatterplots 166

Your Data is Not Normal

Many electronic tools will draw arithmetic mean and
standard deviation lines on their Scatterplots instead
of drawing the standard percentile lines as described
above. That is to say, these tools will figure out the
arithmetic mean of all of their Cycle Time data and
then first draw that horizontal line on the chart. They
will then compute a standard deviation for that data
and draw horizontal lines corresponding to the mean
plus one standard deviation and the mean minus one
standard deviation.

They might go further and draw the +2 standard
deviation and -2 standard deviation lines as well as the
+3 standard deviation and -3 standard deviation lines.
They will call the top standard deviation line the “Up-
per Control Limit” (UCL) and they will call the bottom
standard deviation line the “Lower Control Limit” (LCL).
Theywill then call the resulting graph a “Control Chart”.
If you are using an electronic tool to track your process
maybe you have seen an example of a Control Chart.

You might have further heard several claims about
these charts. First youmay have heard that on a Control
Chart (as described above) 68.2%of the dots fall between
the plus one standard deviation line and the minus one
standard deviation line. They might further go on to say
that over 99% of the dots fall between the +3 standard
deviation in the -3 standard deviation line. You might
have further heard that the reason you want to segment
your data this way is because this type of visualization
will be able to tell you if your process is in control or not
(hence the name Control Chart). Any dots that fall above
the UCL or below the LCL, it is argued, signify the points
in your process that are out of control.

What is being called a Control Chart here is sup-

Chapter 10 - Introduction to Cycle Time Scatterplots 167

posedly inspired by the work of Walter A. Shewhart
while employed at Bell Labs in the 1920s. Shewhart’s
work was later picked up by W. Edwards Deming who
became one of the biggest proponents of the Control
Chart visualization.

There is only one problem. By using the method out-
lined abovewhat they have created ismost certainly not
a Control Chart—at least not in the Shewhart tradition.
What Shewhart Control Charts are and how to construct
them are way beyond the scope of this book, but just
know that you should be skeptical whenever you see
someone show you something that is labeled “Control
Chart”—as it most certainly is not. While I am a big fan
of Shewhart’s work, I am not convinced that canonical
Shewhart Control Charts are applicable in a knowledge
workworld (I am not saying they are definitely not; I am
just saying I have not yet been convinced).

As these things usually go, the problem ismuchworse
than you might think. That tools vendors’ charts are
most assuredly not Control Charts notwithstanding, there
still remains one (at least) fatal flaw with a pseudo
Control Chart approach. These charts—especially the
calculations for the UCLs and LCLs—assume that your
data is normally distributed. I can all but guarantee you
that your Cycle Time data is not andwill not be normally
distributed. We will talk briefly about how your data is
distributed later (in Chapter 10a), but just know that for
now the conclusions based on the standard deviation
calculations above when applied to your non-normally
distributed data will be incorrect.

The use of this normal distribution method is so per-
vasive because that is the type of statistics that that most
of us are familiarwith. One very important consequence
of working in the knowledge work domain is that you
pretty much have to forget any statistics training that

Chapter 10 - Introduction to Cycle Time Scatterplots 168

you may have had up until this point (for a great book
onwhyweneed to forget the statistics thatwe have been
taught read “The Flaw of Averages”). We do not live in
a world of normal distributions. But as we are about to
see with Scatterplots, that is not going to be a problem at
all.

As a quick aside, you may have also heard the name
“Run Chart” in association with these diagrams. Again,
the Scatterplots I am talking about here are not Run
Charts. A deep discussion of Run Charts is also beyond
the scope of this book. I am not saying that Run Charts
are not useful, by the way—far from it. I am just trying
to be clear that this chapter’s Cycle Time Scatterplots are
most certainly not Run Charts.

Getting back to standard percentiles, there are at
least three reasons why I like those lines better than
the dubious Control Chart tactic mentioned above. First,
notice that when I described how to draw the standard
percentile lines on a Scatterplot I never made one men-
tion of how the underlying Cycle Time datamight be dis-
tributed. And that is the beauty of it. To draw those lines
I do not need to know how your data is distributed. In
fact, I do not care (yet). These percentile line calculations
work regardless of the underlying distribution.

Second, note how simple the calculations are. You
just count up all the dots and multiply by percentages.
Simple. You are not required to have an advanced de-
gree in statistics in order to draw these lines.

Third, percentiles are not skewed by outliers. One
of the great disadvantages of a mean and standard de-
viation approach (other than the false assumption of
normally distributed data) is that both of those statistics
are heavily influenced by outliers. You have probably
heard the saying, “If Bill Gates walks into a bar, then on
average everyone in the bar is amillionaire”. Obviously,

Chapter 10 - Introduction to Cycle Time Scatterplots 169

in the Bill Gates example, average is no longer a useful
statistic. The same type of phenomenon happens in our
world. However, when you do get those extreme Cycle
Time outliers, your percentile lines will not budge all
thatmuch. It is this robustness in the face of outliers that
is why percentile lines are generally better statistics for
the analysis of Cycle Time.

As Imentioned at the beginning of this section, chances
are if you are using an electronic tool for metrics that
it will not show you a Scatterplot view with percentile
lines overlaid. So what are you to do? You can use a tool
like excel and generate the charts yourself. Or you can
use the ActionableAgileTM Analytics tool as it takes care
of everything for you.

Conclusion

Randomness exists in all processes. One of the best ways
to visualize the randomness in your process is to put
your Cycle Time data into a Scatterplot. As with CFDs, a
Cycle Time Scatterplot can yield vast amounts of quan-
titative information (the qualitative side of Scatterplots
will be discussed in Chapter 11).

I mentioned at the beginning of this chapter that
Cycle Time Scatterplots are a great way to visualize
Cycle Time data that goes far beyond simple analysis by
average. I hope that you are convinced of that now.

I have only scratched the surface so far with re-
gard to the quantitative analysis of Scatterplots, but this
should be enough to get you started. It is enough, in fact,
to allow us to switch gears and look at how qualitative
analysis of these charts might work.

However, before we get into the details of how to
interpret Scatterplots, I would like to take a short detour

Chapter 10 - Introduction to Cycle Time Scatterplots 170

to discuss how to view the shape of your Cycle Timedata.

Key Learnings and Takeaways

• Scatterplots are one of the best analytics for visu-
alizing Cycle Time data.

• This type of visualization communicates a lot of
quantitative andqualitative information at a glance.

• The anatomy of a Scatterplot is:
– The X-axis represents the process timeline.
– The Y-axis represents the Cycle Time for an
item to complete.

– The labels and reporting intervals on the chart
are at the sole discretion of the graph’s cre-
ator.

• A Cycle Time Scatterplot is not a Control Chart. It is
not a Run Chart, either.

• One of the best ways to put some structure around
Cycle Time Scatterplot data is to draw percentile
lines. Consider startingwith the 50th, 70th, 85th, and
95th percentiles.

• Percentiles have the advantages of being easy to
calculate, being agnostic of the underlying data
distribution, and not being skewed by outliers.

Chapter 10a - Cycle Time
Histograms
While the analysis of Cycle Time Histograms is techni-
cally an advanced topic, I dowant to discuss thembriefly
in the interest of completeness. The good news is that
you need not master this analysis to be successful with
the predictability concepts presented in this book.

So why even mention Histograms at all? I mention
them here for two reasons. First, Histograms are closely
related to Cycle Time Scatterplots in that they are really
just another view of the same data shown on a Scatter-
plot. And, second, a brief introduction toHistogramswill
be helpful for other concepts I will introduce later (e.g.,
Classes of Service and Forecasting).

As I have done so many times previously, I need
to insert a disclaimer at this point. For the purposes
of this chapter whenever I say the word “Histogram”
without any qualifier, what I really mean is “Cycle Time
Histogram”. Further, this chapter is not meant to rep-
resent an exhaustive treatment of these charts. For that
I invite you to explore some of the books listed in the
Bibliography at the end of this book.

What is a Histogram?

Simply stated, a Histogram is graphical display of data
that uses bars of different heights to show the frequency
of different data points within an overall dataset. A His-
togram is very similar to a bar chart with one important
distinction being that a Histogram groups population

171

Chapter 10a - Cycle Time Histograms 172

elements together in ranges. An example Histogram is
shown in Figure 10a.1:

Figure 10a.1: An Example Cycle Time Histogram

Figure 10a.1 shows frequency on the vertical (or Y)
axis and Cycle Times on the horizontal (or X) axis. The
advantage of this chart is that it gives you an overall
idea of the shape of the distribution of your underlying
data. Knowing this shape can give you some insight
to the problem areas of your process. You might be
interested to know that in knowledgework, a Histogram
that shows Cycle Time usually looks much like what is
shown in Figure 10a.1. That is to say Histograms in our
world usually have a big hump on the left and a long tail
to the right. Why this type of shape occurs in knowledge
work, whether it is a log-normal or a Weibull or some
other distribution, and what the shape is telling us are
questions that have answers that are beyond the scope
of this introductory book. Just know that a deep analysis
is possible (and potentially very powerful).

Chapter 10a - Cycle Time Histograms 173

Constructing a Histogram

Constructing a Histogram is rather straightforward. As
I just mentioned, the vertical axis of this chart is fre-
quency and the horizontal axis represents the ranges of
intervals (or bins) that you are interested in. For a given
data population, you go through each element and every
time a given data point falls within a particular range,
you increment the frequency of bin. The height of the
bins, therefore, represents the number of times that data
points of your dataset occurs within that range.

To illustrate, let’s consider the example of rolling four
independent (but equal) six-sided dice. In this example
we will add up the face value on the dice after each roll
and plot them on a Histogram. The bins that we will use
for the horizontal axis will therefore be all the possible
values for a given roll. That is, since the smallest value
for a given roll is four (four times one), our binswill start
at four. Since the highest possible value is twenty-four
(four times six), then our bins will end at twenty-four.
We will have one bin for each possible value between
four and twenty four. Figure 10a.2 shows the Histogram
after ten, one hundred, and five thousand rolls, respec-
tively (please note that these Histograms were not gen-
erated with the ActionableAgileTM Analytics tool).

Figure 10a.2: Rolling Dice Histogram (10 trials, 100 trials, and
5000 trials, respectively)

The thing to note about Figure 10a.2 is that as the

Chapter 10a - Cycle Time Histograms 174

number of trials increases, the shape of the distribution
sharpens. In other words, more data is usually better
than less data when it comes to visualization (but do
not be fooled into thinking you need massive amounts
of data to be successful with a statistical approach).

Just like the experiment of adding up the results
of rolling four, equal, six-sided dice produced random
results that could be plotted as the Histograms shown
in Figure 10a.2, so your process will generate random
Cycle Times that can be displayed in a similar manner.
Figure 10a.1 is one such example. Again, the lesson here
is that the more data you have, the sharper the picture
you get.

As I said in the introduction, a Histogram is simply
another way to plot the data contained with the Scatter-
plot. As such, we can place percentile lines on them in
much the same way that was explained in Chapter 10.
Figure 10a.1 shows an example of this.

Having both views with the same percentiles is use-
ful because both views serve different purposes. The
Scatterplot is a temporal view of data that can show
trends of dots over time. A Histogram is a condensed,
spatial view based on the frequency of occurrence of
Cycle Times. Looking at the Scatterplot in Figure 10.1 it
may not be obvious that the shape of the data is that in
Figure 10a.1. Likewise, looking at the Figure in 10a.1 you
may not be able to detect any patterns of Cycle Times
over a given timeline.

Conclusion

Though short, my hope is that this chapter has given
you some insight as to why you might want to look at
your Cycle Time data in the analytical chart known as

Chapter 10a - Cycle Time Histograms 175

a Histogram. I took this detour as I wanted to make
sure you had this introduction given that I am going
to leverage these charts to explain key concepts in the
following chapters.

Now that we have checked Histograms off of our list,
it is time to get back to the more pressing matter of how
to interpret the data displayed in a Scatterplot.

Key Learnings and Takeaways

• A Histogram is a graphical display of data that uses
bars of different heights to show the frequency of
different data points within an overall dataset.

• The Histogram is a condensed, spatial view that
shows the shape of the underlying Cycle Time data
while the Scatterplot is a temporal viewof data that
can show trends of dots over time.

• Histograms can be used for more advanced Cycle
Time analysis and forecast modeling techniques.

Chapter 11 - Interpreting
Cycle Time Scatterplots
One of the great advantages of a Scatterplot is that it
allows us to visually detect trends in our process’s Cycle
Time over time.

But before we get started, I want to expressly callout
themaxim that I have repeated over and over until now:

Your policies shape your data and your data
shape your policies.

I mention this again because as you read through
the explanations of some of the Scatterplot patterns that
follow, you will quickly realize that most of these results
are due to policies that are explicitly under the team’s
control. If you see some anomalies creep into your data,
then the first thing you should ask yourself is “What
policy (either explicit or implicit) do we have in place
that is causing our data to look like this?” Use that data
to suggest changes to process policies and then verify the
change had the intended effect by further collecting and
re-examining future data.

The rest of this chapter will be devoted to taking a
closer look at some of the trends and patterns that may
appear on your Cycle Time Scatterplot.

The Triangle

A triangle-shaped pattern as shown in Figure 11.1 will
appear in any situationwhere Cycle Time increases over

176

Chapter 11 - Interpreting Cycle Time Scatterplots 177

time.

Figure 11.1: A Triangle Pattern on a Scatterplot

Notice how the dots in the above Scatterplot (Figure
11.1) form a pattern that looks something like a triangle.
Explaining this phenomenon is going to require us to
review the fundamental property of Scatterplots: dots
do not actually show up until a work item has finished.
The items that have longer Cycle Times are going to need
an extended period before they appear on the chart.
That means that the longer the Cycle Time (the dot’s Y-
component) the longer the amount of time we are going
to have to wait (the dot’s X-component) to see that data
point.

There are twomajor cases to consider whenever you
see this pattern emerge on your Scatterplot. The first is
when arrivals exceed departures, and the second is the
accumulation of Flow Debt.

For the first major case, let’s consider the context
where a project starts from zero WIP. Whenever you
start with an empty process it is going to take time
to “prime the pump”. Obviously, in those early stages

Chapter 11 - Interpreting Cycle Time Scatterplots 178

work will be pulled in faster than it departs—even if
we are limiting WIP. We are going to need time for
each workflow step to fill up to its capacity and get a
predictable flow going. Once that stable flow occurs,
then the expectation is that the triangle will eventually
flatten out into a more predictable arrangement.

Figure 11.2: Triangle Pattern that Flattens Out

In Figure 11.2 you can see how the dots form a
triangle up until about the beginning of September, but
then flatten out as the process stabilizes.

If you have the case where WIP never gets to zero,
then a triangle will form whenever you have a non-
trivial period of time where the top line and bottom
line on your CFD diverge (see Figure 7.5). The pattern
in Figure 11.1 could be due to the fact that for almost
the whole timeline of the process represented here, this
team did not controlWIP. As we have said over and over
in previous chapters, increased WIP leads to increased
Cycle Times. Not controlling WIP will only cause Cycle
Times to get longer and longer and longer.

Chapter 11 - Interpreting Cycle Time Scatterplots 179

The secondmajor reason that a triangle patternmight
emerge on your Scatterplot is a process that is dom-
inated by Flow Debt. Remember from Chapter 9 that
Flow Debt accrues any time that items are left to age ar-
bitrarily. Aging of items could be due to blocks, toomuch
WIP (as in the case above), or poor (or misunderstood)
pull policies. Even if a team explicitly controlsWIP, Flow
Debt can occur. Flow Debt can therefore easily explain
the emergence of a triangle. The items at the bottom
of the triangle were those items that were pulled pref-
erentially through the process (for whatever reason)
whereas items toward the top of the triangle were left
to age unnecessarily (again, for whatever reason). If
Arrival Rate and Departure Rate are matched, then the
only way you will not see a triangle on your Scatterplot
is if you control Flow Debt.

Clusters of Dots

The second type of pattern that might emerge is an
obvious clustering of dots on your Scatterplot. Consider,
for example, the following chart in Figure 11.3:

Chapter 11 - Interpreting Cycle Time Scatterplots 180

Figure 11.3: Clusters on a Scatterplot

Note the clusters of dots at the beginning of October
2008 (around themiddle of Figure 11.3) and at the end of
July 2009 (the lower right side of Figure 11.3). As with all
of these analytics, the point is to get to the point where
you can ask the right questions sooner. So, when we see
clusters of dots like in Figure 8.11, we are at the very
least going to want to ask “what’s going on here?” That
should probably quickly be followed by “is this a good
thing or a bad thing?” If it is bad, what can we do about
it?

By the way, not all clusters of very low Cycle Times
are good. Look at the cluster of dots for July 2009 again
in Figure 8.11. What do you think might be causing our
Cycle Times to have decreased so radically? Are you
only thinking of good reasons?What might be some bad
reasons that would cause this to happen? One sinister
reason that I see all too often is mandatory overtime. It
stands to reason that if your normal data is based on 8
hour days and 5 day work weeks that moving to 12 hour
days and 7 day work weeks will probably make your
Cycle Time look better (assuming, of course, that you

Chapter 11 - Interpreting Cycle Time Scatterplots 181

continue to limit WIP!). But is that a good thing? I know
most managers would say yes. I would say otherwise.
And from a predictability perspective, it is terrible. Not
only are long periods of mandatory overtime not sus-
tainable but it also skews our data. Do you really want to
be offering an SLA ormaking a forecast withmandatory
overtime as one of the upfront assumptions that is baked
in? If your answer to that question is “yes”, then this
book is not for you.

Gaps

Gaps in the dots on your Scatterplot means that no work
items finished in that particular time interval. These
gaps will directly correlate with the same time period
that a flat section appears on the bottom line of your
CFD. Flat lines on the CFD mean nothing completed; if
nothing has completed then no dots will show up on
your Scatterplot. Further, the cause of these gaps is the
same reasons that CFD Throughput flattens out: public
holidays, external blockers, batch transfer, etc.

Batch transfer bears somemore exploration. It is not
uncommon for a Scrum team to generate a Scatterplot
that looks like Figure 11.4:

Chapter 11 - Interpreting Cycle Time Scatterplots 182

Figure 11.4: Batch Transfer on a Scatterplot

The stacks of dots that you see here are at the sprint
boundaries when there is a mad rush to complete work
items. But look at how the data thins out between those
stacks. Is this a good thing or a bad thing? Either way,
what impact is this having on our predictability? If you
think it is a bad thing, what might you do change that?

You might be surprised that I have not talked much
about variation in this chapter. The truth is that I am
not going to talk all that much about variation here. A
full treatment of variation is well beyond the scope of
this book (and has already been accomplished by much
greater minds than mine). Further, understanding vari-
ation is more of a “thinking” thing rather than a “tool”
thing. I believe that it is mostly impossible to classify
variation of your data into things like “special causes”
or “common causes” simply by looking at a Scatterplot
(at least as I have described them here). Rather, my only
two immediate goals are (1) to discuss some patterns
that may appear on your Scatterplot, and (2) to get you
to start asking some questions about why those patterns
may have emerged.

Chapter 11 - Interpreting Cycle Time Scatterplots 183

Internal and External Variability

I began this chapter by suggesting that a Scatterplot just
looks like a random collection of dots on a chart. The
reason that Scatterplots look the way they do is because
of the variation that exists in your process. The first
thing to know about variation is that it will always exist.
From a predictability perspective, the point is not to
always try to drive variation out; rather, the pointwill be
to understand the causes of that variation in an attempt
to make your process more predictable.

For example, take a look at Figure 11.5:

Figure 11.5: An Example Scatterplot

At first glance you might be inclined to dismiss those
dots at the top of the Scatterplot as outliers. You might
question the value of including them since they are
clearly one-offs. Youmight even (if you did not like your-
self very much) do some further quantitative analysis
to prove that those dots are not statistically significant.
And you know what, if you made those assertions then
I probably would not argue with you too strenuously. I

Chapter 11 - Interpreting Cycle Time Scatterplots 184

would say, though, that while those points are outliers,
they obviously happened and probably warrant some
deeper investigation. I would also say that, while po-
tentially statistically insignificant, there might be some
good contextual or qualitative reasons to keep them in
from an analysis perspective.

To illustrate this point, consider what the chart in
Figure 11.5 is communicating to us. The 50th percentile
of Cycle Time is 20 days and the 85th percentile is 44
days. But you can see there is a work item on this chart
that took 181 days! Can you think of some reasons that
would have caused that particular work item to take so
long? Maybe the team had a development dependency
on an external vendor or a dependency on some other
internal development team. Maybe the team did not
have a test environment immediately available to them.
Maybe the customer was not immediately available for
sign-off. The shared theme for all of these reasons is that
thosework items took so long to complete due to reasons
outside of the team’s control. And that is generally what
you will find as you move “up the stack” of dots on a
Scatterplot. More often than not, those outliers will be
caused by circumstances that are outside of the team’s
control.

The opposite is also generally true. As you move
“down the stack” the work items that took less time to
completewere generally due to reasons thatwere totally
under the team’s control. For example, reconsider that
work item that I just mentioned that took 181 days to
complete. Do you really think that item would have
taken 181 days if it was totally under control of the
team that was working on it? Maybe, but probably not.
Additionally, look at those dots that just barely violated
that 85th percentile line. Do you think that there were
things that the team could have done to ensure that the

Chapter 11 - Interpreting Cycle Time Scatterplots 185

violation did not happen? Probably (swarm or break up
the item are two ideas that come immediately to mind).

I hope that you are getting a feel for the type of
variability analysis that I am asking you to performwith
these Scatterplots. Will all outliers be due to external
causes? Certainly not. Maybe the team allowed an item
that ended up being too big into the process. Maybe the
team ignored an item once it had been pulled. Likewise,
will there be external issues hiding in the shorter Cycle
Times? Almost certainly. But at least I have shown you
how to use a Scatterplot with percentile lines to begin
the conversations about how to address those issues.
Further, the more you adhere to the assumptions of
Little’s Law, the more confident we can be that the “up
the stack” dots are due to outliers, and the “down the
stack” dots are due to team policies.

Lastly, I have tried very hard not to use the language
of the theory of variation (e.g., “special cause” and “com-
mon cause”) as well as I have tried very hard not to
use the language of Statistical Process Control (SPC). Not
that I have anything against those approaches. Quite the
opposite, in fact. I hold in very high regard the work of
Shewhart and Deming. However, for most people and
most purposes, going down an SPC path leads to aca-
demic debates about how to distinguish common cause
from special cause, such as arguing over what specific
statistical technique you should use for determining the
upper and lower control limits (as discussedpreviously).
These types of debates only serve to cause confusion and
miss the point of what we are trying to accomplish any-
way. Use the Scatterplot as a powerful way to visualize
variation. But do not think it will magically categorize
that variation for you. You are still going to have to
inspect the dots, shapes, and patterns that emerge on
your diagram. In other words, you are still going to have

Chapter 11 - Interpreting Cycle Time Scatterplots 186

to think for yourself in order to get more predictable.

Conclusion

As with CFDs, the real purpose for analyzing a Cycle
Time Scatterplot is to learn. To learn you should ask
some familiar questions. “What’s going on with our
Cycle Time?” “Is what’s going on a good thing or bad
thing?” “If good, how can we keep doing it?” “If bad,
what interventions could make things better?” A Scat-
terplot not only gets you to asking the right questions
sooner, but will also suggest the right actions to take for
increased predictability.

There aremany things that contribute to the random
scattering of dots present on most Scatterplots. You may
have been surprised to find out thatmost of the causes of
randomness are things we do to ourselves (well, maybe
not so surprised had you been reading closely until
now).

Now that we have a decent understanding of what
Scatterplots are and how to interpret them, it is time
to move on to how we might use our newfound knowl-
edge to enhance our predictability via the Service Level
Agreement.

Key Learnings and Takeaways

• The policies that you have in place will greatly in-
fluence the patterns and trends of dots that appear
on your Scatterplot.

• Some qualitative things to look for on Cycle Time
Scatterplots:

– A triangle pattern that never flattens out
– Clusters of dots (either high or low)

Chapter 11 - Interpreting Cycle Time Scatterplots 187

– Long periods of gaps in the data
– Extreme outliers
– Dots that just cross a give percentile line

Chapter 12 - Service Level
Agreements
In Chapter 10 I explained how to use percentile lines as
an aid to analyzing Scatterplot data. But what exactly
are the percentile lines telling us?

To answer this question, we must first revisit some
principles from the previous section. Recall that in one
of the chapters on the Conservation of Flow (Chapter
8) I talked about the principle of just-in-time commit-
ment. Just-in-time commitment helps us to balance the
demand on the system with the system’s capacity. How-
ever, there is a direct consequence of implementing this
methodology. The other dimension of deferred com-
mitment that does not really get talked about all that
much is the necessity that we must—at the time of
commitment—also communicate to our customers a date
range and confidence level for each and every commit-
ted-to work item. For example, when we pull an item
into our process wemight tell our customers that we ex-
pect that item to flow all the way through to completion
in fourteen days or less with 85% confidence level.

These date ranges and confidence levels are nor-
mally published as part of process visualization and
are commonly known as “Service Level Agreements”
or SLAs. Now, I personally hate the term SLA (I think
Deming would too). SLA sounds too much like the lan-
guage of formally negotiated contractswith penalties for
nonconformance. That is really not what we are talking
about here. What we are talking about is a reasonable
expectation of service that a team is committing to for a

188

Chapter 12 - Service Level Agreements 189

particular item. A team or an individual should not be
punished for missing these commitments (recall that I
talked earlier about the term commitment with a small
“c”). Rather, the team should take any missed SLA as an
opportunity to learn. Why did we miss the SLA? Is there
anything we can to do prevent that happening in the
future?

Better nomenclature for the concept of a SLA, in my
opinion, is “Service Level Expectation” or “Cycle Time
Target”. However, as SLA is the term most commonly
used in our industry then I am going to adopt that
vocabulary myself for our purposes in this chapter.

The way we determine what date range and con-
fidence level that we can reasonably commit to is by
looking at the percentile lines on our Scatterplot.

To explain, I want to refer you back to Figure 10.5.
You can see in this diagram that the 50th percentile
for the Cycle Times is 20 days, the 85th percentile is 43
days, and the 95th percentile is 63 days. That means that
any item that enters our process has a 50% chance of
finishing in 20 days or less, an 85% chance of finishing
in 43 days or less, or a 95% chance of finishing in 63
days or less. Armed with this information we can sit
down with our customers and ask them what kind of
confidence level they would be most comfortable with.
If they are ok with us missing our commitments 50% of
the time, then the team would choose 20 days at 50% as
its SLA. If, however, they want a greater confidence in
terms of the team meeting its commitments, then the
team may choose to go with an SLA of 43 days at 85%.
To reiterate, the choice of a team’s SLA should be made
in close collaboration with their customers.

While there is no hard and fast rule on this, it is
been my experience that most teams start out at the
85th percentile as their SLA. The goal of the team then

Chapter 12 - Service Level Agreements 190

should be to first meet that SLA at least 85% of the time
(true predictability) but then also to bring down the total
number of days that the 85th percentile represents over
time. Part of process improvement is going to be to shift
all the percentile lines down asmuch as possible (but no
further!). A wider spread in those lines means not only
a higher number of days that we must communicate for
our SLA, but it also means that our process is suffering
frommore variability. Both of those things decrease our
overall predictability.

Take the following example of Figure 12.1:

Figure 12.1: A Wider Spread in Percentiles

In Figure 8.6 the 50th percentile for the chart is 20
days, the 70th percentile is 25 days, the 85th percentile
is 54 days, and the 95th percentile is 75 days. Think for
a second about what an interesting conversation this
would be when we present this data to our customers.
At a 70% confidence, the team would require a 25 day
or less SLA. But to go to an 85% confidence—that is just
a 15% increase in confidence—the team would have to
more than double their SLA from 25 days to 54 days!

Chapter 12 - Service Level Agreements 191

This particular example is taken from a real world client
of mine and, in this instance, the customer chose the
70% SLA to start out. Interestingly enough, though, the
team, by implementing the strategies outlined in this
book, was able to shift all of those percentile lines down
over the course of the project such that by the end,
the 85% percentile was now 25 days—exactly what the
70% percentile had been just months before. The team
removed unnecessary variability, and, by definition, be-
came more predictable.

I have just explained how to use standard percentiles
to establish an SLA, but you might question, “How do
I know if these standard percentiles are the right ones
to use for my context?” Great question. The answer is
that if you are just starting out, then those standard
percentiles aremost likely good enough. How youmight
detect if you need to move to another percentile more
suitable for your specific situation is a more advanced
topic that will need to wait for my next book. The point
is that there is no hard and fast rule in terms of what
percentile numbers to use. All I can say is begin with
these standard ones and experiment from there.

Another question you might ask is, “How many data
points do I need before I can establish an SLA?” The
answer to that is—as always—dependent on your spe-
cific context. But I can tell you it is probably less than
you think. As few as maybe 11 or 12. Probably no more
than 30. The bigger question is in terms of quality not
quantity. Instead of considering the number of dots,
one question you may ask yourself is how well is your
process obeying the assumptions of Little’s Law in the
producing those Cycle Times? The better you are at
adhering to those assumptions, the fewer data points
you will need. If you consistently violate some or all
of the assumptions, then almost no amount of data is

Chapter 12 - Service Level Agreements 192

going to provide you a confidence level that you can be
comfortable with.

The last thing I want to say about SLAs is that there
are generally three mistakes I see when they are set.
Those mistakes are:

1. To set an SLA independent of analyzing your Cycle
Time data.

2. To allow an SLA to be set by an external manager
or external management group.

3. Set an SLA without collaborating with customers
and/or other stakeholders.

For the first point I want to say that there is nothing
(necessarily) wrong with choosing an SLA that is not
supported by the data. For example, let’s say your data
communicates that 85th percentile is 45 days. It would
technically be ok to publish an SLA of 35 days at 85%.
But at least make that decision in context after having
reviewed what your Scatterplot is telling you.

The secondmistake should be obvious, but it is worth
reiterating. The whole point of an SLA is not to beat a
team into submission or to punish themwhen theymiss
their commitments. Since it is the team who is making
the commitment, it should be the team that chooses
what that commitment point is. The only other party
that should be involved in the decision to set an SLA
should be a customer and/or other stakeholder.

Which brings me to the last point. We are nothing
without our customers. As stated in Chapter 1, they
are the whole reason for our existence. It is our pro-
fessional obligation to design a process that works for
them. Therefore, our customers should have a seat at
the tablewhen discussingwhat commitment confidence
level is acceptable. Theymay surprise you. Theymay opt

Chapter 12 - Service Level Agreements 193

for a shorter Cycle Time SLA with a higher uncertainty.
They may be fine with a longer Cycle Time SLA if that
means greater certainty. Our customers and stakehold-
ers almost certainly have contextual information that
we do not that will have some bearing on our choice of
an SLA. Listen to them.

SLAs for Different Work Item Types

In the chapter on Cumulative Flow Diagrams (Chapter
4), I talked about the strategy of filtering on different
work item types to generate different views of your
data. The same approach is available for us to use on
Cycle Time Scatterplots. Let’s say we had a dataset that
included the work item types of user stories, defects,
andmaintenance requests. With this data we could gen-
erate a Scatterplot and corresponding percentile lines
for the data that included all three work items. Or we
could generate a Scatterplot that included data for just
the user stories. Or one that included just the defects,
or one for just the maintenance requests, or for some
combination thereof. Aswith CFDs, any one of these data
segmentations—and their corresponding analysis—is per-
fectly valid.

But why might we want to segment our data in this
way? There are at least two answers to this question. The
first might be that you have tagged the items that did
not finish “normally” (e.g., were abandoned) and want
to filter your data to showonly those. Displaying only the
abandoned items would give you a good visualization
as to the time wasted on those activities. That might
give rise to questions and conversations about how to
minimize those occurrences.

The second reason for segmenting is that the Cycle

Chapter 12 - Service Level Agreements 194

Time percentiles for a Scatterplot consisting of data for
only the work item type of “story” are probably going to
be much different from the Cycle Time percentiles for a
Scatterplot consisting of data for only thework item type
of “defect”. Segmenting our data this way would allow
us—if we wanted—to offer different SLAs for different
work item types. For example, our SLA for user stories
might be 14 days at 85% but for defects it might be five
days at 85%.

I am reluctant to discuss this SLA segmentation now,
because you have to be very careful here. Remember
that all the assumptions of Little’s Law still apply. If you
are going to offer different SLAs for differentwork items
types, then you have to ensure that all the assumptions
for Little’s Law for each and every subtype are adhered
to.

Offering different SLAs for different work item types
is a fairly advanced behavior. If you are just starting
out with flow principles, I would highly recommend just
setting one global SLA for all your work items types
and get predictable that way first. Ignore “conventional
wisdom” that you have to design in things like Classes
of Service up front and offer different SLAs for those
different Classes of Service immediately. To put it deli-
cately, I believe this type of advice is misguided (a fuller
treatment of Class of Service and its dangers is presented
in Chapter 13). If you are new to these metrics, begin
by applying the principles presented in this book and
thenmeasure and observe. Get predictable at an overall
system level first. You may find that is good enough.
Only optimize for subtypes later if you really need to.

Chapter 12 - Service Level Agreements 195

Right-Sizing

One last thing about percentiles and SLAs. Remember
that in Chapter 8 I talked about the concept of just-
in-time commitment and about how operating a pull
systemallows us to defer commitment to the last respon-
sible moment. In that chapter I also talked about the
consequence of deferring commitment is that we need
to do what we can to make sure that—once committed
to—an item has the best possible chance of flowing
through the system to completing. One of those things
we need to do is to perform a “right size” check on the
item.

Before you ask, right-sizing does not mean you do a
lot of upfront estimation and planning. Remember, this
book emphasizes measurement and observation over
estimation and planning. The SLAwe have chosen is the
measurement we are looking for. In other words, the
SLA will act as the litmus test for whether an item is of
the right size to flow through the system. For example,
let’s say we have chosen an SLA of fourteen days at
85%. Before a team pulls an item into the process, a
quick question should be asked if the team believes that
this particular item can be finished in fourteen days or
less. The length of this conversation should bemeasured
in seconds. Seriously, seconds. Remember, at this point
we do not care if we think this item is going to take
exactly five days or nine days or 8.247 days. We are not
interested in that type of precision as it is impossible
to attain that upfront. We also do not care what this
particular relative complexity is compared to the other
items. The only thing we do care about is we think we
can get it done in 14 days or less. If the answer to that
question is yes, then the conversation is over and the
item is pulled. If the answer is no, then maybe the team

Chapter 12 - Service Level Agreements 196

goes off and thinks about how to break it up, or change
the fidelity, or spike it to get more information.

Some of you out there may be arguing that right-
sizing is a form of estimation. I would say that you
are probably right. I never said that all estimation goes
away. All I said was that the amount and frequency with
which you do estimation will change. Think about all
the time you have wasted in your life doing estimation.
Think about all the time wasting in “pointless” debates
of whether a story is two points or three points. Using
these percentiles is a means to get rid of all of that.
Measuring to get an SLA allows us to adopt a much
lighter approach to estimation and planning. Tome, this
is one of the biggest reasons to gather the data in the first
place.

Percentiles as Intervention Triggers

There is still another reason to look at our Cycle Time
data percentiles as they pertain to SLAs. And to under-
stand this other reason, we need to first talk about life
expectancy.

According to a life expectancy calculator atWorldLife-
Expectancy.com (at the time of this writing), a female
born in the United States has a life expectancy of 85.8
years at the time of her birth. If she lives to be 5 years
old, her life expectancy goes up to 86.1 years. If she lives
to be 50, her life expectancy becomes 87.3 years. And if
she lives to be 85 (her life expectancy at the time of her
birth), her new life expectancy jumps to 93! This data is
summarized in the following table:

Chapter 12 - Service Level Agreements 197

Figure 12.2: Life Expectancies at Different Ages

It is a little known fact that the older you get, the
longer your life expectancy is. That is due to the fact that
the older you get themore things you have survived that
should have killed you.

The exact same phenomenon happens with Cycle
Time. Generally speaking, the older a work item gets,
the greater chance it has of aging still more. That is bad.
Remember, delay is the enemy of flow!

This is why it is so important to study the aging of
work items in progress. As items age (as items remain in
processwithout completing), we gain information about
them. We need to use this information to our advantage
because, as I have said many times before, the true
definition of Agile is the ability to respond quickly to
new information. To paraphrase Don Reinertsen, this
new information should cause our tactics to change. The
percentiles on our Scatterplot work as perfect check-
points to examine our newfound information. We will
use these checkpoints to be as proactive as possible to
insure that work gets completed in a timely and pre-
dictable manner.

How does this work? Let’s talk about the 50th per-
centile first. And let’s assume for this discussion that our
team is using an 85th percentile SLA. Once an item re-
mains in progress to a point such that its age is the same
as the Cycle Time of the 50th percentile line, we can say
a couple of things. First, we can say that, by definition,
this item is now larger than half the work itemswe have

Chapter 12 - Service Level Agreements 198

seen before. That might give us reason to pause. What
have we found out about this item that might require us
to take action on it? Do we need to swarm on it? Do we
need to break it up? Do we need to escalate the removal
of a blocker? The urgency of these questions is due to
the second thing we can say when an item’s age reaches
the 50th percentile. When we first pulled the work item
into our process it had a 15% chance of violating its SLA
(that is the very definition of using the 85th percentile as
an SLA). Now that the item has hit the 50th percentile,
the chance of it violating its SLA has doubled from 15%
to 30%. Remember, the older an item gets the larger the
probably that it will get older. Even if that does not cause
concern, it should at least cause conversation. This is
what actionable predictability is all about.

When an item has aged to the 70th percentile line,
we know it is bigger than more than two-thirds of the
other items we have seen before. And now its chance
of missing its SLA has jumped to 50%. Flip a coin. The
conversations we were having earlier (i.e., when the
item hit the 50th percentile line) should now become all
the more urgent.

And they should continue to be urgent as that work
item’s age gets closer and closer to the 85th percentile.
The last thing we want is for that item to violate its
SLA—even though we know it is going to happen 15%
of the time. We want to make sure that we have done
everything we can to prevent a violation occurring. The
reason for this is just because an item has breached its
SLA does not mean that we all of a sudden take our
foot off the gas. We still need to finish that work. Some
customer somewhere is waiting for their value to be
delivered.

However, once we breach our SLA we are squarely
in unpredictable land because now we cannot commu-

Chapter 12 - Service Level Agreements 199

nicate to our customers when this particular item will
complete. For example, take a look at the figure below
(Figure 12.3):

Figure 12.3: The Danger of Breaching an SLA

You can see in this chart that the 85th percentile is 43
days. But there is an item in late October that took 181
days to finish (do you see that isolated dot right at the
top of the chart?). That no man’s land between 43 days
and 181 days (and potentially beyond) is a scary place to
be in. We want to do whatever we can not to have items
fall in there.

Conclusion

SLAs are one of the most important and yet least talked
about topics in all of Lean-Agile. SLAs not only allow
teams tomake commitments at the individualwork item
level, but they also give us extremely useful informa-
tion about when teams need to intervene to ensure the
timely completion of those items. Further, if a team
follows all of the principles presented in this book, then

Chapter 12 - Service Level Agreements 200

the SLA can be used as a substitute for many upfront
planning and estimation activities.

I began Chapter 11 by discussing how most of the
reasons why we are not predictable is due to things
under our control that we do to ourselves. One of the
most common thingswedo to ourselves that hinders our
predictability is not pay attention to the order in which
items are pulled through our process. This problem is
so common that I will devote the entirety of the next
chapter to discussing its perils.

Key Learnings and Takeaways

• Use your Scatterplot’s percentiles to collaborate
with your customers in choosing a Service Level
Agreement for your process (other terms for Ser-
vice Level Agreement could be Service Level Ex-
pectation or Cycle Time Target).

• As with CFDs, it is possible to segment your data by
type. You might choose to do this to offer different
SLAs for different work item types in your process.

• SLAs allow for commitment (and estimation) at the
work item level.

• SLAs provide a sense of urgency to items that have
been committed to.

• You can also use Cycle Time data percentiles as a
guide for “right-sizing” items that come into your
process. Use this right-sizing as a shortcut for esti-
mation.

• Comparing an item’s age to its SLA can provide
useful information about when to make an inter-
vention to ensure timely completion.

PART FOUR - PUTTING IT
ALL TOGETHER FOR
PREDICTABILITY

201

Chapter 13 - Pull Policies
Most airports around theworld allow access to the flight
departure area if a person can prove that he is a pas-
senger who is indeed flying that day. This proof usually
takes the form of a valid boarding pass and a valid
government-issued ID.

The United States is no exception to this rule. In the
U.S., the Transportation Security Administration (TSA)
is responsible performing passenger checks. TSA agents
are stationed right before security and passengers wish-
ing to get to the departures areamust first check-in with
these agents.

Many small airports in the U.S. staff only one TSA
agent to perform traveler validation. At those small
airports during busy periods, quite a long queue will
form in front of the sole agent. Little’s Law tells us that
as more and more people join the queue, those people
can expect to wait for longer and longer amounts of
time to get through the checkpoint (on average). In this
scenario, if you are a regular passenger, do you see the
problem with predictability?

It gets worse.
In an attempt to streamline the process for what are

considered low-risk passengers, the TSA has introduced
something called “TSA Pre-check” (TSA Pre). Passengers
who are certified as TSA Pre do not have to go through
the whole security rigmarole of taking off shoes, taking
off belts, taking off jackets, and removing laptops. That
is great if you are TSA Pre. The problem is that you still
have to go through the upfront TSA passenger validation
outlined previously. However, the TSA has attempted to

202

Chapter 13 - Pull Policies 203

solve this problem by establishing a different lane for
TSA Pre passengers to queue in to get their credentials
checked. So now there are two lanes for two different
types of passenger: a first lane called TSA Pre (as I have
just mentioned) and a second lane that I am going to call
“punter”. In the small airports, unfortunately, there is
still usually only one upfront, credential-checking agent
to serve both of these lines. The TSA’s policy is that
whenever there is a person standing in the TSA Pre line,
that the agent should stop pulling from the punter queue
and pull from the TSA Pre queue. See a problem with
overall predictability yet?

It gets worse.
In addition to a separate TSA Pre lane there is usually

a separate “priority lane” for passengers who have qual-
ified for elite status on an airline. These passengers still
have to go through the same security checks as the other
punters, but they do not have to wait in a long line to get
the upfront ID check. To be clear, this is technically not a
TSA thing, it is usually an airport/airline thing. However,
at those small airports, it is the single TSA agent’s usual
policy to look at the TSA Pre line first. If there is no one
there, she will look at the priority lane next and pull
people from there. Only if there is no one in the TSA Pre
or priority queue will the agent start to pull again from
the punter line. See a problem yet?

It gets worse.
As I just mentioned, everyone who wants to get air

side at an airport must go through this upfront ID check.
Everyone. This includes any and all airline staff: pilots,
flight attendants, etc. Crewmembers can usually choose
whatever line they want to get their credentials checked
(TSA Pre, Priority, or punter). Further, once they are in
those lines, the crew are allowed to go straight to the
front of their chosen queue regardless of how many

Chapter 13 - Pull Policies 204

people are ahead of them. At those small airports, the
sole TSA agent first looks to see if there are any airline
crew in line. If none, then they look to see if there are
any TSA Pre passengers. If none, then they look to see
if there are any priority passengers. If none, then they
finally pull from the punter line. See a problem yet?

If you are in the punter line, guess what you are
doing while that lone TSA agent pulls passengers from
those higher priority queues? You got it: waiting. What
do you think this is doing to the predictability of the
punter queue? In other words, how many assumptions
of Little’s Law have been violated in this airport sce-
nario? Is Little’s Law even applicable here?

Class of Service

This airport screening example is a classic implementa-
tion of a concept known as Class of Service (CoS):

A Class of Service is a policy or set of policies
around the order in which work items are
pulled through a given process once those
items are committed to (i.e., once those
items are counted as Work In Progress).

That is to say, when a resource in a process frees
up, CoS are the policies around how that resource de-
termines what in-progress item to work on next. There
are three subtleties to this definition that need to be
addressed up front.

First, a Class of Service is different than a work item
type (I spoke about how to segment WIP into different
types in Chapter 2). This point can be very confusing
because many a Kanban “expert” uses these two terms
interchangeably. They are not. At least, not necessarily.

Chapter 13 - Pull Policies 205

We can choose to segment our work items into any
number of types and there is no prescription as to what
categories we use for those types. Some previous exam-
ples I have given for work item types are user stories,
defects, small enhancements, and the like. You could
also segment work items into types using the source or
destination of the work. For example, we could call a
unit of work a finance work item type, or we could say it
is an external website work item type. Orwe could call a
unit of work a regulatory work item type or a technical
debt work item type. The possibilities are endless. And,
yes, one of the ways you could choose to segment types
is by Class of Service—but you do not have to. I have
always thought a better way to apply CoS is to make it a
dimension of an existing type. For example, a work item
of type user story has an expedited CoS, a work item of
type regulatory requirement has a fixed date CoS. But
that is just personal preference. Just know that work
item types and CoS are different. Do not let the existing
literature out there on this stuff confuse you.

To be clear, you can have any number of types of
Class of Service as well. Themost talked about ones hap-
pen to be Expedite, FixedDate, Standard, and Intangible.
But those are only four examples of limitless kinds of
Class of Service. Any time that you put a policy in place
(explicit or not!) around the order in which you pull
something through a process, then you have introduced
a Class of Service.

The second subtlety of the above definition is that
CoS does not attach until a work item has been pulled
into the process. I cannot stress this point enough. There
is absolutely nopoint in having adiscussion aboutwhether
work item A is an Expedite (for example) and whether
work item B is a Fixed Date while both items A and B
are still in the backlog. The reason for this is, as I have

Chapter 13 - Pull Policies 206

mentioned so many times before, is that while those
items are still in the backlog there is no confidence that
either will ever be worked on. Additionally, it is entirely
possible that once committed to, our SLA would predict
that we need not give any preferential pull order to
that item. For example, let’s assume that it is February 1
when we pull a new item into our process. Let’s further
say that this new item has a due date of February 28,
and that the SLA for our process is 11 days. In this
case, our SLA would predict that this item will complete
well before its due date so there would be no point in
giving it any preferential treatment. Given both of these
scenarios, why waste time determining the order of pull
before an item is in the system? That is why the decision
of what CoS to use happens only at the time of an item’s
first pull transaction.

Which brings me to the last subtlety about CoS. The
order in which items are pulled once committed to is
very different from the decision criteria around what
item to work on next at input queue replenishment
time. Again, this is a very subtle but very important
distinction. The criteria for what items we pull next off
the backlog are very different from the criteria around
the order in which we pull those items once in progress.
If this concept is still ambiguous to you, then hopefully I
will have cleared it up by the end of this discussion.

The Impact of Class of Service on
Predictability

In the last chapter, I mentioned that most teams do not
understand how the improper implementation of pull
policy—whether explicit or not—negatively impacts their
system’s predictability. They do not understand these

Chapter 13 - Pull Policies 207

negative impacts because CoS has either never been
properly or fully explained to them. I would like to
quantify these negative impacts by examining a pull
policy scenario that I have set up for you.

In this particular example, we are going to be oper-
ating a process that looks like Figure 13.1:

Figure 13.1: The WIP Limited Process in our Simulation

You will notice on this board that the Specifying
column has a Work In Progress limit of two, the Devel-
opment column has aWork In Progress limit of two, and
the Test columnhas aWork In Progress limit of one. Let’s
further suppose that for this process we will be working
through a backlog of 50 items. In this experiment, we
are going to size all of our items such that each one
takes exactly 10 days to go through each column. That
is, every item in the backlog that flows through this
board will take exactly 10 days in Specifying, 10 days in

Chapter 13 - Pull Policies 208

Development and 10 days in Test. We are also going to
introduce twoClasses of Service: Standard andExpedite.
I will explain the pull order rules for each of these as we
go through the simulation. Lastly, you should know that
in this experiment there will be no blocking events or
added scope. We will start the simulation with 50 items
in the backlog and we will finish the simulation with 50
items in Done. All items will be allowed to flow through
unmolested.

Or will they?
Youwill notice from the design of the board in Figure

13.1 that, at the end of the 20th day, two items will have
completed in the Dev column but there will only be
space to pull one of those items into the Test column. As
you are about to see, the simple decision around which
of those two to pull will have a dramatic effect on the
predictability of your system.

For the first run we are going to assign only a Stan-
dard CoS for work items on the board. Further, we are
going to define a strict “First-In, First-Out” (FIFO) pull
order policy for those Standard class items. That is, the
decision aroundwhat item should be pulled next will be
based solely on which item entered the board first.

Before I show you the results, I would like you to try
to guess what the expected Cycle Time for our items will
be. (Note: for these simulations I am going to consider
the “expected value” for the Cycle Times to be the 85th
percentile.) If you are ready with your guess then read
on.

Chapter 13 - Pull Policies 209

Figure 13.2: Strict FIFO Pull Order with No Expedites

Figure 13.2 shows a Histogram of the Cycle Time
results. You can see that after running this simulation,
the 85th percentile for our Cycle Times is 50 days. In
otherwords, 85% of our items finished in 50 days or less.
Also, as you look at the distribution of Cycle Times in
the Histogram above, you will see that we have a fairly
predictable system—there is not much variability going
on here. But let’s see what happens when we begin to
tweak some things.

In this next round, we are going to replace our strict
FIFO pull order policywith a policy that says thatwewill
choose which item to pull next completely at random.
One way it may help you to think about this is when
two items are finished in the Development column, we
are essentially going to flip a coin to see which one we
should pull next into the Test column.

Any guess now as to what this new policy is going

Chapter 13 - Pull Policies 210

to do to our expected Cycle Time? To variability? To
predictability?

Figure 13.3: Random Pull Order with no Expedites

In this case (Figure 13.3), the simple switch from
FIFO queuing to random queuing has increased our 85th
percentile Cycle Time from50 days to 60 days—that is an
increase of 20%! Did you expect that such aminor policy
change would have such a big Cycle Time impact? You
can also see that the corresponding distribution (shown
in Figure 13.3) is much more spread out reflecting the
increased variability of our random decision making.

Things get interesting when we start to add in some
expedites. Let’s look at that next.

We are now going to go back to the pull policy where
our Standard class items are going to be pulled through
in a strict FIFO queuing order. The twist we are going
introduce, though, is that we are now going to include

Chapter 13 - Pull Policies 211

an Expedite Class of Service for some of the items on our
board. In this round we are going to choose exactly one
item on the board at a time to have an Expedite Class of
Service. When one expedited item finishes, another one
will be immediately introduced. These Expedites will be
allowed to violate WIP limits in every column. Further,
whenever both an Expedite and Standard class item fin-
ish simultaneously, then the Expedite item will always
be given preference over the Standard item when it
comes to deciding which one to pull next.

Standardquestions apply before proceeding: any thoughts
on Cycle Time impact? Variability? Predictability?

Figure 13.4: FIFO Pull Order with Always One Expedite on the
Board

Any surprises here (Figure 13.4)? Compared to the
previous case (the random pulling case), Expected Cycle
Time has increased five days from 60 days to 65 days.

Chapter 13 - Pull Policies 212

You can see the Histogram (Figure 13.4) has become
much more compact, but there is still a wider spread
than when compared to our baseline case (the strict
FIFO/no expedites case), and, as I just mentioned, over-
all Cycle Times are longer. Did you expect this to be
the worst case yet from a Cycle Time perspective? You
can see that this is only marginally worse than the
random queuing round—but it is still worse. That is
an interesting point that bears a little more emphasis.
In this context, introducing an Expedite CoS is worse
for predictability than simply pulling items at random.
Hopefully you are getting a feel for just how disruptive
expedites can be (if you were not convinced already).

But we are not done yet. There is still one permuta-
tion left to consider.

In this final experiment, we are going to change our
pull policies for Standard class items back to random
from FIFO. We are going to keep the rule of always
having one Expedite item on the board. The pull policies
for the Expedites remain the same: they can violate
WIP limits and will always get pulled in preference to
Standard class items.

Now what do you think will happen?

Chapter 13 - Pull Policies 213

Figure 13.5: RandomPull OrderwithAlwaysOne Expedite on the
Board

Expected Cycle Time in this scenario (Figure 13.5) has
jumped to a simulation-worst 100 days! The spread of
our data shown by the Histogram (Figure 13.5) is also
worrying: Cycle Times range anywhere from 40 days to
170 days. If that is not variability, then I do not know
what is. Remember, in the ideal system of the first case,
the range of Cycle Times were 30 to 50 days.

Let’s look at all these results side by side (Figure 13.6):

Chapter 13 - Pull Policies 214

Figure 13.6: CoS Results Side by Side

I would like you to reflect on this result for a minute.
Minor tweaks to process policies had a dramatic impact
on simulation outcomes. Again, note that these policies
were all things that were completely under our control!
All of the variability in these scenarios was of our own
doing. Worse still, my guess is that you have probably
never even given any thought to some of these policies.
Do you pay attention to how you decide what order to
pull items through your process? Do you try to control
or limit the number of Expedites on your board? Do
you have any clue what a lack of these considerations
is doing to your process predictability?

Obviously in the previous example I have controlled
for story size. That is generally not possible (nor even
required nor suggested) in the real world. Differences
in story size are additional variability that is going to
affect the predictability of the process and make these
Histograms look even worse. That being the case, why

Chapter 13 - Pull Policies 215

would we not try to mimic FIFO as closely as possible?
Why would we not try to control pull policies that we
can control?

The short answer is that we should. The longer an-
swer is that in many contexts FIFO queuing may be
impractical (leaving the business value dimension of
pull decisions aside for a minute).

There are a couple of reasons for the impracticality
of FIFO queuing. Think about a restaurant, for example.
Patrons of restaurants do not flow through in a strict
FIFO ordering. To illustrate, let’s say a group is seated
first at Table A. Then a different group is seated second
at Table B. The group at Table B does not have to wait
until the first group at Table A has finished before the
second group is allowed to leave. That would just be
silly. The groups are, however, usually seated in a First
In First Served (FIFS) order. A (mostly) FIFS scheme is
much more practical in the knowledge work context as
well and usually is the best strategy fromapredictability
perspective.

Extending the restaurant example, let’s say that a
group of four people arrives to an establishment that is
currently full and theyneed towait for a table to openup
in order to be seated. Let’s further say that a group of two
people arrives after the group of four and this second
group needs to wait as well. If the first table to open
up seats only two people, then it is reasonable that the
group of two—who arrived second—would be seated
first. This scenario happens all the time in knowledge
work. Maybe a resource frees up and is ready to pull
an item. But he does not have the expertise to work
on the item that has been waiting the longest (which
should be his first choice). From a practical perspective,
it would be reasonable for him to pull the item that has
been waiting the second longest (assuming, again, that

Chapter 13 - Pull Policies 216

he has the right skills to work on that second one). But
remember, even though this may be the best practical
decision, it may not be the best predictable decision. In
this scenario, what are some longer term improvements
you could make for better predictability?

The point to all of this is that the further you stray
from FIFO queuing, the less predictable you are. That is
not to say that there are not practical reasons why you
should forfeit FIFO. And by the way, arbitrary business
value reasons and fictional Cost of Delay calculations do
not fall into this practical category. But more on that a
little later.

Themost common objection I getwhen I explainwhy
teams should adopt FIFO (or FIFS, or mostly FIFS) and
dump expedites is that, “Expedites happen all the time
in our context and we can’t not work on them”. They
might go on to say that these expedites are unpredictable
in size and number. Not only am I sympathetic to this
argument, I acknowledge that this is the case for most
teams at most companies.

Slack

So what is a team to do? Why, look at FedEx, of course.
Federal Express (FedEx) is an American shipping

company that allows clients to send packages all over
the world. For this example, though, let’s limit the scope
of our discussion to just the continental United States.
Suffice it to say that FedEx knows a thing or two about
flow and predictability, and the company isworth study-
ing.

When a prospective customer wishes to ship a pack-
age via FedEx that customer has several service options
to choose from. She can choose to it send overnight,

Chapter 13 - Pull Policies 217

2nd day air, and standard ground—to just name a few.
All of these service options are going to result in dif-
ferent CoS that FedEx uses in order to make sure that
packages get to their destinations within the agreed
SLA. Think about this for a second. In the U.S. there
are thousands of locations that FedEx will need to pick
up packages from. On any given day, it is impossible
for FedEx to proactively and deterministically know the
exact number of packages, their respective requested
CoS, their full dimensions, weight, etc. that will show up
at any one of their locations. They could have one shop
that is swamped with overnight requests while another
location remains relatively quiet. The magnitude of this
problem is almost beyond comprehension.

The incredible thing is, while I have not used FedEx a
lot, I can tell you that every time I have needed to send a
package overnight it has arrived at its location on time.
How does FedEx do it?

There are a lot of strategies that FedEx employs, but
the one that is probably most important is that at any
given time FedEx has empty planes in the air. Yes, I said
empty planes. That way, if a location gets overwhelmed,
or if packages get left behind because a regularly sched-
uled plane was full then an empty plane is redirected
(just-in-time it should be said) to the problem spot. At
any given time FedEx has “spares in the air”!

A lot of people will tell you that Lean is all about
waste elimination. But imagine if the FedEx CFOwas hy-
per-focused on waste elimination for process improve-
ment. Would that CFO ever allow empty planes to be
in the air at any given time for any reason? Of course
not. Flying empty planes means paying pilots’ salaries,
it means burning jet fuel, it means additional mainte-
nance and upkeep. Luckily for FedEx, they understand
that Lean is not just about waste elimination, it is about

Chapter 13 - Pull Policies 218

the effective, efficient, and predictable delivery of cus-
tomer value. FedExunderstands all toowell the variabil-
ity introduced by offering different CoS. They know that,
in the face of that variability, if they want to deliver on
their SLAs theymust have spares in the air. They have to
build slack into the system. Pretty much the only way to
predictably deliver in the face of variability introduced
by different CoS is to build slack into the system. There
is just no way around it.

So let’s get back to the “we have expedites that we
cannot predict and that we have to work on” argument.
Armedwith this information about variability and slack,
what do you think would happen if you went to your
management and said, “ifwewant to predictably deliver
on all of the expedites in our process (to say nothing
of all of our other work), we need to have some team
members that sit around, do nothing, and wait for the
expedites to occur.” You better have your resume up-
dated because after you get laughed out of the room you
will be looking for a new job.

“Ok, so you cannot have idle developers,” so-called
CoS experts will tell you, “then what you need to do is
put a strict limit on the number of expedites that can
be in your process at any given time.” They will further
advise you that the limit on expedites needs to be as
small as possible—potentially as low as a WIP limit of
one. Problem solved.

Not at all.
This advice ignores two further fundamental prob-

lems of CoS. For the first I will need another example. In
my regular Kanban trainings I am a big fan of using Rus-
sell Healy’s getKanban board game. I like the game not
because it shows people how to do Kanban properly, but
because it does a great job of highlighting many of the
errors in the advice given by so many Kanban experts.

Chapter 13 - Pull Policies 219

One of those errors is the advised use of an expedite
lane on a Kanban Board (or CoS in general). Now in this
game, there is a lane dedicated for expedited items, and,
further, there is an explicitWIP limit of one for that lane.
This is the exact implementation of the strategy that I
just explained. So what is the problem? At the end of the
game, I take the teams through an analysis of the data
that they generated while they played the simulation
(using all the techniques that have been outlined in the
previous chapters). The data usually shows them that
their standard items flow through the system in about
ten or eleven days at the 85th percentile. And the spread
in the Cycle Time data of standard items is usually
between three and 15 days. The data for the expedited
items’ Cycle Time show that those items always take
three days or less. You can see that the policies those
teamsused to attack the expeditesmade thememinently
predictable. You will also note that those policies also
contributed to the variability in the standard items, but
that is not what is important here. What is important
here is what happens when we project this to the real
world. Imagine now that you are a product owner and
you see that your requested item is given a standard
CoS. That means that the team will request eleven days
to complete it. But if your requested item is given an
expedited CoS, then that item gets done in three days.
What do you think is going to happen in the real world?
That is right: everything becomes an expedite! Good luck
trying to keep to the WIP of the expedited lane limited
to one.

But that is not the only problem. Let’s say that you
work at an enlightened company and that they do agree
that there will only be one expedited item in progress at
any given time. It turns out even that is not enough! In
the simulation example above, we limited our expedited

Chapter 13 - Pull Policies 220

items to one but that still caused a sharp increase in
Cycle Time variability. Why? Because there was always
one expedited item in progress. If you are going to have
an expedited lane, and you limit that lane’s WIP to one,
but there is always one item in it, then, I am sorry to
say, you do not have an expedited process. You have
a standard process that you are calling an expedited
process, and you have a substandard process which is
everything else.

For all practical purposes, introducing CoS
is one of the worst things you can do to
predictability.

But, you might argue, the real reason to introduce
CoS is to maximize business value (for the purposes of
this conversation, I am going to lump cost of delay and
managing risk in with optimizing for business value). I
might be persuaded by this argument if I believed that it
was possible to accurately predetermine business value.
If you could do that, then you really do not need to be
reading this book because your life is easy. Obviously,
if you have a priori knowledge of business value then
you would just pull items in a way that maximizes that
value. However, most companies I work with have no
clue about upfront business value. And it is not due to in-
experience, incompetence, or lack of trying. The reason
most companies do not know about an item’s business
value upfront is because that value—in most cases—is
impossible to predict. As value is only determinedby our
customers, an item’s true value can only be known once
put in the hands of the customer. Sure, most companies
will require a business case before a project is started
and this business case acts a proxy for business value.
But, as you know, most business cases are anywhere

Chapter 13 - Pull Policies 221

from pure works of fiction to out and out lies. Basing
pull decisions on disingenuous arguments is suspect at
best.

Let’s put it another way. As I just mentioned, true
business value can be determined only after delivery
to the customer. Choices about what to work on and
when, then, are really just you placing bets on what
you think the customer will find valuable. By introduc-
ing CoS and by giving preference to some items in the
process over other items means that you are gambling
that the customer will find those preferred items more
valuable. The problem is that when you lose that bet—
and I guarantee you almost always will—you will have
not only lost the bet on the expedited item, but you will
have also lost the bet for every other item in progress
that you skipped over.

Honestly, I am only mostly that cynical. I do believe
that the business value of an item should be considered,
but I believe it should only be considered at input queue
replenishment time. After an item is placed in process
then I believe the best long term strategy is to pull
that item—and all other items—through the process as
predictably as possible. After all, part of the business
value equation is how long it will take to get an item
done. If you cannot answer the question “how long?”
then how much confidence can you really have in your
business value calculation?

What about obvious high value expedites? Things
like production being down that require all hands on
deck?Or a new regulatory requirement that could result
in massive fines for noncompliance? Obviously, those
things will—and should—take precedence. But, just like
the FedEx example, you should study the rate of occur-
rence for those items and adjust your process design
accordingly. That will potentiallymean lowering overall

Chapter 13 - Pull Policies 222

process WIP. That will probably mean making sure free
resources look to help out with other items in process
before pulling in new items. And so on.

To come full circle on our discussion about Little’s
Law that was started in Chapter 3, I hope it is obvious
for you to see how CoS represents a clear violation of
the fourth assumption of Little’s Law (and potentially
the first and the third as well). The central thesis of this
book is that every violation of a Little’s Law assumption
represents a reduction in overall process predictability.
CoS represents an institutionalized violation of those as-
sumptions. How could you ever expect to be predictable
when using CoS as your standard process policy?

Conclusion

It is obvious that to solve the problem outlined at the be-
ginning of this chapter, the TSA could simply hire more
agents. At the very least you would want to have a min-
imum of one agent per queue. This intervention would
potentially solve the problem—or it would go a longway
to alleviating it. Note that in this case, however, CoS
would be eliminated. If each queue had its own server,
then there would be no need for CoS. Wouldn’t it be
great if all our problems could be solved by just adding
more people? The reality is that most companies do not
have the money to keep hiring. That being the case, we
want to make sure that we are using the resources we
do have as efficiently as possible. That means choosing
pull policies that maximize our resources’ effectiveness
and eliminating policies that make it harder for those
resources to do their jobs predictably.

Although it probably sounds like it, I am not saying
that CoS is inherently evil or that all CoS implementa-

Chapter 13 - Pull Policies 223

tions are incorrect. I am, however, coming at this from
the perspective of predictability. With that considera-
tion, what I am saying is that you need to consider
all aspects of CoS before implementing those policies.
By definition, CoS will introduce variability and unpre-
dictability into your process. The unpredictability mani-
fests itself—among other things—as Flow Debt (Chapter
9). The truth is that the only part of your process that is
more predictable with CoS is the highest priority class.
Overall, CoS will cause your process to actually take a
predictability hit (see Figures 13.4 and 13.5). Are you
really that confident that the upfront value decisions
that you are making with CoS are worth more than all
the negative implications?

The arguments swirling around out there about why
to use CoS are very seductive. The people making those
arguments are very persuasive. I am hoping I have at
least given you something to think about before assum-
ing you should start with CoS as a default.

For me, the better strategy is to consider an item’s
forecasted value at queue replenishment time. Then,
once in process, pull that item through while paying
attention to all the concepts outlined in this and the
previous chapters.

You have to know what you are doing before you do
it. Build your process. Operate it using the policies for
predictability that I have outlined thus far. Measure it.
And thenmake a determination if CoS can help. Chances
are you will never need CoS.

Chances are you will never need Class of
Service once you have a predictable process.

But what else do we need to consider ourselves pre-

Chapter 13 - Pull Policies 224

dictable? I implied earlier that there are essentially to
dimensions to being predictable:

1. Making sure your process behaves in a way it is
expected to; and,

2. Making accurate predictions about the future.

Up until now we have mostly talked about point #1.
It is time that we turn our attention to point #2.

Key Learnings and Takeaways

• Class of Service is the policy or set of policies around
the order in which work items are pulled through
a given process once those items are committed to
(i.e., counted as Work In Progress).

• Class of Service only attaches at the point of com-
mitment.

• Class of Service is different from queue replenish-
ment.

• Assigning awork item a Class of Service is different
from assigning a work item a type.

• Class of Service represents an institutionalized vi-
olation of some assumptions of Little’s Law. This
violation takes the form of Flow Debt which ulti-
mately makes your process less predictable.

• The only way to predictably deliver using Class of
Service is to build slack into the system.

• Instead of designing Class of Service into your pro-
cess up front, consider other things you can do to
eliminate or mitigate the need for them.

• Only introduce CoS after you have operated your
process for a while and are confident that CoS
is necessary. Still consider policies for CoS that
mitigate their inevitable negative impact on flow.

Chapter 14 - Introduction
to Forecasting
One of the definitions of predictability is the ability
to make a quantitative forecast about a process’s fu-
ture state. Since forecasting is a part of predictability,
I thought I would least say a few words about it.

A forecast is just a calculation about the occurrence
of some future event. Yes, an estimate can be thought
of as a forecast. But the forecasts that we are going to
talk about in this chapter are going to be much more
scientific than just some poor guy’s best guess.

For the most part, we are going to be asked to make
forecasts about the completion times for a given task,
feature, project, etc., so for the purposes of this discus-
sion let’s limit ourselves to time forecasts. That means
that from now on whenever I use the word “forecast”
on its own, I am really referring to a “time forecast”.
Although, it should be said, that I believe the principles
I am going to talk about here are applicable to any type
of forecast.

Before we get any further, I would like to discuss
is the necessary components of a forecast. You should
never—and Imean never—communicate a forecast that
does not include at least two things: a date range and a
probability for that date range occurring.

A forecast is a calculation about the future
completion of an item or items that includes
both a date range and a probability.

The future is full of uncertainty, and whenever un-

225

Chapter 14 - Introduction to Forecasting 226

certainty is involved then a probabilistic approach is
necessitated (think quantum physics, the weather, etc.).
A forecast without an associated probability is deter-
ministic, and, as you know, the future is anything but
deterministic.

With that said, let’s get to some methods that you
can—and, more importantly, cannot—use to develop a
forecast. As this is an introduction, themethods outlined
here are not meant to be all inclusive nor do I flatter
myself to think that the treatment of the ones that I have
chosen is exhaustive. For a richer discussion of these
methods, please consult the references listed at the end
of the book.

Little’s Law

As I stated Chapter 3, using Little’s Law to calculate a
quantitative forecast is an incorrect application of the
law. Little’s Law is about examining what has happened
in the past. It is not aboutmaking deterministic forecasts
about the future. One of the reasons you cannot make
deterministic forecasts with Little’s Law is because it is
impossible to predict which of the Law’s assumptions
will be violated in the future and how many times they
will be violated. Remember, each violation of an as-
sumption invalidates the exactness of the law.

Even if you could use Little’s Law for projections, you
would not want to. The reason is because it is a rela-
tionship of averages (arithmeticmeans). Youneverwant
to make a forecast based on an average. Average is a
meaningless statistic unless you know something about
the underlying distribution of the data from which the
average was calculated. Specifically, when we are ig-
norant of the distribution, then we do not know what

Chapter 14 - Introduction to Forecasting 227

percentile we are talking about when we say the word
“average”. For example, depending on the shape of the
distribution, the mean could be significantly less than
50%, exactly 50%, or significantly more than 50%.

But you will recall that with Little’s Law we do not
care about the probability distributions of the underly-
ing stochastic processes. If we do not know the distri-
bution, then we cannot give a probability of where the
average falls. If we do not know a probability, then we
cannot make a forecast. It is that simple.

Alternatively, using Little’s Law for a gut check val-
idation of a forecast for a qualitative determination is
perfectly acceptable. But of course you would not want
tomake any staffing, cost, or project commitments based
on these back-of-the-envelope calculation type calcula-
tions.

But what if we do know something about the under-
lying distribution? That knowledge could be extremely
valuable. Further, I would argue it is worth investing in
acquiring that knowledge. Any time we have distribu-
tion information we are going to run away from Little’s
Law for forecasting and toward some of the better tech-
niques that follow.

Forecasts for a Single Item

What if you are asked to make a forecast about the com-
pletion of a specific work item, or epic or project? The
answer to this question is actually very straightforward.
In fact, I have already told you how to do it. In order to
make a projection for a single work item, you will have
to first collect the Cycle Time data for the all same types
of work items à la the method I described in the Scatter-
plots chapter (Chapter 12). Once you have that data, it is

Chapter 14 - Introduction to Forecasting 228

a very simple exercise to answer the abovequestion. You
will just choose the percentile that you want to attach
to your forecast and use the corresponding range. For
example, look at the following Scatterplot for a team’s
user stories (Figure 14.1):

Figure 14.1: A Sample Scatterplot

A simple forecast that you could give using this data
is that a typical work item completes in 43 days or less
85% of the time. And that is it. If the work items we are
interested in were epics or projects, for example, then
we would need to capture the Cycle Time data for epics
or projects and then the approach to come up with a
forecast for those work item types is exactly the same.

Straight Line Projections

I hate to belabor this point, but anyCFDwith a projection
on it is not a CFD. It is a Burn Up chart or Projection
Chart or something else, but it is most definitely not a
CFD. To review, there are two reasons why a projections
on CFDs are incorrect. The first reason is because to do

Chapter 14 - Introduction to Forecasting 229

a projection the chart must have some type of backlog
displayed. But CFDs should not have backlogs on them.
That is mistake number one. The second reason is that
CFDs are for looking backward, they are not for making
projections about the future. That is mistake number
two. The fact that it is not a CFD is not a bad thing
because this projection view can potentially be very
useful (used incorrectly it can also be very bad). I should
point out here that because I cannot call them CFDs, the
term I am going to use for these types of charts is going
to be either Burn Up Charts or Projection Charts.

Many teams are tempted to just perform a straight
line projection off of the Throughput line on a Burn Up
chart. The calculation—it is reasoned—is fairly simple.
If a backlog has 100 items in it and the team is averaging
10 items per week, then it is easy to draw a trend line
off the Throughput line and see where it intersects the
backlog line as above. If you drop a line down to the
X-axis at the point where the two lines intersect, then,
voila, you have your release date.

There are so many problems with this approach that
I am not sure where to begin. The first, and potentially
most obvious since we just talked about it, is that once
again this forecast is being based on an average. I have
already discussed several reasons why you should not
do that so I will not go into them here.

Secondly, over time, there is going to be variability in
both the Backlog and Average Throughput. Depending
on the time horizon under consideration, both the Back-
log and Throughput can vary wildly (see the S-curve
section below). Looking at this rather one-dimensional
view of the world could cause managers to either panic
or be overly confident depending on which way the
variability pendulum swings on any given day.

Thirdly, there is no date range. That is one of our re-

Chapter 14 - Introduction to Forecasting 230

quirements for a proper forecast. Noproblemsay the ad-
vocates. Let’s draw an optimistic line for the backlog and
a pessimistic line for the backlog. Likewise, let’s draw
an optimistic and pessimistic line for the Throughput
trend line. Now we have several points of intersection
for consideration that we can use for our completion
date range. While I would agree that this is a much
better view of the world, it still raises several questions.
How were the optimistic and pessimistic backlog lines
determined? The same should be asked of the Through-
put lines. But most importantly, what is the probability
of hitting this range?

A further complication of a straight line projection
is that your completion rate over the long term is po-
tentially not a straight line. As I mentioned before, any
time you start a project with zero WIP and end with
zero WIP, the resulting pattern of the Throughput line
on the CFD mimics an “S-curve”. Using a straight line to
approximate an S-curve is problematic at best and dan-
gerous at worst. There are overly complicated methods
to approximate S-curves out there (again with no range
and probabilities attached), and I am not going to get
into them here, but I will say that the effort put into
generating those forecasts would be better spent using
more modern forecasting methods.

Just as with Little’s Law, it is probably ok to perform
a straight line projection for the purposes of a quick gut
check on project status. But any insight you may gain is
certainly not actionable. In fact, any actionmotivated by
this strategy would probably be akin to tampering.

The thing is, however, if you put in place all the
predictability measures that I have talked about in this
book up until now, then straight line projections do
not necessarily give results that are that bad. If you
truly can keep continuous WIP, minimally violate the

Chapter 14 - Introduction to Forecasting 231

assumptions of Little’s Law, not introduce CoS, then this
type of approach might be good enough. If it is and it
works for you, then, great, keep doing it. I am not going
to tell you otherwise. But even so, we might be able to
tweak things a little bit to give you more insight.

If you insist on using a Burn Up to do your projec-
tions, then might I suggest you augment your charts
with the percentiles off of your Scatterplot? The way it
would work is as follows. Start with your arrival and
departure data for a CFD. Choose a completion date for
your project (or release or whatever) and extend the
timescale of the X-axis out to that completion date. Draw
a vertical line up from the X-axis at that specific date.
Fromyour Scatterplot locate the Cycle Time for your 85th
percentile (or whatever percentile you feel comfortable
with). Take that 85th percentile Cycle Time and subtract
it from your completion date. You can draw another line
at this data and mark it “85th Percentile or something.

There are several advantages to this view. First, as
with other projections of this nature, you know that
any items that make up the Throughput line before the
completion date are going to be in the release. Second,
you know that any item that is started before that 85th
percentile line has a greater than 85% chance of making
the release. Any item started after that line has a less
than 85% chance of making the release (you could draw
subsequent percentile lines to communicate the dimin-
ished chance of late-started items ofmaking the release).

Obviously, this chart will not tell you the exact num-
ber of items that will be in any given release (a better
question to ask, by the way, is what is the likelihood of
getting at least X number of work items finished by a
particular date). But I would argue no chart out there
will tell you that. Not deterministically anyway. As you
approach the release date, you have a better and better

Chapter 14 - Introduction to Forecasting 232

understanding of the probability of items making it or
not. Product owners (or customers) can then use that
information to help guide them in the selection of what
items should be started next. And that is probably about
as good as you are going to get with a straight line
projection approach.

Conclusion

In my experience, making a forecast for a single item’s
completion is very straightforward. Simply use the SLA
method mentioned in Chapter 12.

Further, I do not recommend using Little’s Law or a
straight-line projection to make a forecast for a comple-
tion date. That is because both approaches are based on
averages and neither give a probability of success.

If you really want to get good at probabilistic fore-
casting, then you are going to have to use a tool like
the one we are going to talk about next: Monte Carlo
Simulation.

Key Learnings and Takeaways

• A proper date forecast includes both a range and a
probability.

• To forecast the completion of a single item use
SLAs the method for calculating them outlined in
Chapter 12.

• Do not use Little’s Law for forecasting.
• Do not use averages for forecasting.
• Straight line projections are problematic because
they are based on averages and because they do
not communicate a probability of success.

Chapter 15 - Monte Carlo
Method Introduction
In 1873, a Yorkshire cotton industry engineer named
Joseph Jagger walked into a casino in Monte Carlo. Sev-
eral days later he walked out of the casino with what
amounted to close to over three million dollars (in to-
day’s money) having “broke the bank”. In all truthful-
ness, though, during Jagger’s run the casino itself never
actually ran out of money (although the croupier’s bank
at the table did). But the story’s place in popular culture
had been cemented.

About seventy years later, a group of physicistswork-
ing on nuclear fission problems at Los Alamos Labora-
tory in New Mexico named a method of using a statis-
tical approach to solving complicated equations after a
casino in Monte Carlo. Coincidence? Well, not really.

What did the two events have in common other than
the name Monte Carlo? It was the recognition that a
statistics could be used to solve highly complex prob-
lems.

At its simplest, the Monte Carlo Method (or Monte
Carlo simulation) can be thought of as experiments with
random numbers. The method is normally applied to
highly uncertain problems where direct computation is
difficult, impractical, or impossible. It has proved a use-
ful tool in all kinds of fields like nuclear physics (which
we just saw) oil and gas exploration, finance, insurance,
etc. Given the uncertainty in knowledge work it seems
strange that our industry has been rather late to the
Monte Carlo game. One might argue that it has taken

233

Chapter 15 - Monte Carlo Method Introduction 234

the emergence of modern agile methods to get us to
the point where would could even model the work that
we do for simulation. Regardless, I firmly believe that
the Monte Carlo Method is the future of forecasting in
knowledge work. Teams and companies that get this
idea will survive. The others will not.

To offer a glimpse of how to perform a Monte Carlo
Simulation, I offer this snippet fromWikipedia:

Monte Carlo methods vary, but tend to follow a
particular pattern:

1. Define a domain of possible inputs.
2. Generate inputs randomly from a probability

distribution over the domain.
3. Perform a deterministic computation on the

inputs.
4. Aggregate the results. <newline>

The intricacies and practices about how tomodel and
simulate knowledgeworkusing theMonte CarloMethod
are well beyond the scope of this book. Anyone truly
interested in applying this method to knowledge work
should review Troy Magennis’ work on Lean Forecast-
ing. I am not going to reproduce all of that information
here. Rather, my goal is to discuss why flow principles
and flow metrics are necessary to make a Monte Carlo
approach more actionable. Operating your process in
the manner that I have explained up until now is going
to make it much easier for you to build more accurate
models. More accurate models will lead to more accu-
rate forecasts. And that is, after all, what we are all
looking for.

Chapter 15 - Monte Carlo Method Introduction 235

As always, for the purpose of clarity, there are a
couple of things I need to mention first. From this point
forward I am going to use the terms “Monte Carlo Simu-
lation” and “The Monte Carlo Method” interchangeably
(my apologies to the purists out there). Further, I am
going to categorize Monte Carlo Simulations into two
cases: the case when you have data and the case when
you do not. For the latter situation (when you do not
have data), you are forced to choose a probability dis-
tribution for the value or values that you are trying to
simulate. This choice quickly gets into a philosophical
debate around what is the best type of probability dis-
tribution to use. As you may have guessed, I have never
been one to shy away from a good debate; however, I
believe this one is fairly academic. That is why, for the
rest of this chapter, I am going to focus on the case when
you do have data with which to simulate.

What Data to Use

This brings me to my first advice when doing Monte
Carlo Simulation: if you have the data, use the data. If
you do not have the data, then get the data (mine it or
measure it), and use the data. Even if you are forced to
pick a distribution when performing your first simula-
tion because you have no data, you should quickly do
what you can to gather real data to replace the original
artificial distribution in your model.

I want to emphasize that by “gather real data” what
I mean is to measure the basic metrics of flow from
a process that utilizes all of the techniques outlined in
this book. If you have an intrinsically unstable process,
then that process might not be a great candidate for
Monte Carlo Simulation. For example, one indication

Chapter 15 - Monte Carlo Method Introduction 236

that your process data might not be suitable for Monte
Carlo simulation is if you have a CFD that looks like
Figure 7.5 (where arrivals far outpace your departures).
In Chapter 7 I showed that Figure 7.5 demonstrates a
scenario where Cycle Times are constantly increasing.
Ever increasing Cycle Times mean that any selection of
data from a past timeframe is a poor indication of what
might happen in a future timeframe. This problem is
mostly eliminated if you operate a process that looks like
Figure 7.8 (where arrivals match departures).

However, getting to a process that produces a CFD
like Figure 7.8 is not necessarily good enough. Another
“smell” that our data might not be suitable for Monte
Carlo Simulation is if we have a triangle-shaped Scat-
terplot as shown in Figure 11.1. A triangle pattern on
a Scatterplot is also the result of an inherently unstable
process. Recall that even if you have a CFD that looks
like Figure 7.8, you still can have a Scatterplot that looks
like Figure 11.1. The culprit in that scenario is FlowDebt.
Large accumulations of Flow Debt destabilize a process
andmake it imminently unpredictable. Could you throw
the Cycle Time data from Figure 11.1 into a Monte Carlo
Simulation? Yes.Would the resulting forecast be reason-
able? Probably not.

Your Model’s Assumptions

The second thing you need to you need to know about
Monte Carlo Simulations is that you need to be keenly
aware of assumptions. I am not just talking about the
assumptions built into your model, but I am also talking
about the assumptions built into howwhatever tool that
you use (I am assuming you are using a tool for Monte
Carlo Simulations) implements those assumptions. The

Chapter 15 - Monte Carlo Method Introduction 237

accuracy of your model—and I cannot emphasize this
enough—is going to depend onhowwell youmatch your
process policies (that is, the day-to-day rules around
how you operate your process) to all assumptions in the
model and simulation tool.

Your model’s ability to produce an accurate
forecast is going to depend on how well you
match your process policies to your model’s
assumptions.

For example, let’s revisit the scenario that I outlined
in the Class of Service chapter (Chapter 13). In that
simulation, we had a Kanban board that looked like
Figure 15.1:

Figure 15.1: A Kanban Board Used as a Model for Monte Carlo
Simulation

Now let’s say that you have modeled the case where

Chapter 15 - Monte Carlo Method Introduction 238

you have Standard items and Expedite items and that
you can only have one Expedite item on the board at
a time. Further, let’s say that Expedite items can vio-
late WIP limits and can block other Standard items to
complete. Let’s assume you havemodeled all of that cor-
rectly. But let’s say that you did not model any policies
around the order of pull between Standard items that
finish at the same time.

Additionally, let’s say that the tool you are using
defaults to a strict FIFO pull order in the absence of any
other policy being modeled. Finally, let’s say that your
actual day-to-day process uses (without explicitly stating
it) a purely random pull order for Standard items. To be
clear, in this scenario, we have a mismatch between the
toolwhich assumes strict FIFO and your implicit process
policy that assumes a random pull order.

Do you remember what is going to happen here?
Your simulation—because it assumed FIFO for Standard
items—is going to spit out a forecasted Cycle Time for
your Standard items of 65 days at the 85th percentile.
However, your real-world process—because you are us-
ing random queuing—is actually going to result in Cycle
Times of 100 days at the 85th percentile. Due to that
one missed assumption, you have over-optimistically
forecast by up 35 days per item! Think about how this
problem gets multiplied if you have hundreds of items
in your backlog. What do you think your customers are
going to say if you forecast a 65-day 85th percentile,
but actually operated your process at a 100-day 85th
percentile?

Another classic example of a missed assumption is
when there is an open WIP spot but an item was not
pulled immediately. Consider a scenario where you are
operating a process that produces the following Kanban
board:

Chapter 15 - Monte Carlo Method Introduction 239

Figure 15.2: An Example Kanban Board

In Figure 15.2, you can see that the Test column has
a WIP limit of three, but there is only one item in it.
Further, you can see there are three items in the Devel-
opment Done column that are waiting to be pulled. Let’s
also say that the board has been in this state for several
days. However, the tool that you used to model this
process never allows this condition to happen. That is to
say that the Monte Carlo Simulation tool automatically
and immediately pulls an item from Dev Done to Test
whenever Test has space under its WIP Limit. Can you
see that in your real world process that your items are
aging longer than they were simulated to have done?
That is a problem.

The moral of the story is that you have to use the
assumptions in your model (both explicit or implicit) as
actionable interventions to take while you are actually
operating your process, or you have to take action to
change the assumptions in the model to match the real
world as it unfolds. When you get this right, then a
Monte Carlo strategy is the going to be one of the most
powerful predictive tools in your arsenal.

The thing to know about Monte Carlo simulation
is that there is no one predicted outcome. Sampling a
probability distribution will lead to thousands of pos-
sible outcomes that then, in turn, need to be analyzed

Chapter 15 - Monte Carlo Method Introduction 240

in terms of the probability that they will indeed occur.
Once you have obtained a forecast using Monte Carlo,
your job is not done. It is not just set it and forget it.
You need to actively manage to the assumptions in the
model or change the model assumptions based on new
information.

Conclusion

To be successful in forecasting, you have to first know
what constitutes the proper form of a forecast and then
you have to understand what methods are your friends
in terms of developing reliable forecasts.

Even the best forecasting methods, however, are go-
ing to be only as good as the data they are based on.
The first step in building a reliable forecast is to put
in place a predictable process such that you can have
confidence in the data that you are collecting. A forecast
put together using bad data (from an unstable system,
for example) produces something that either no onewill
like or no one will believe (this is the GIGO principle:
Garbage In, Garbage Out). No forecasting method is
going to be a suitable substitute for either (a) common
sense thinking or (b) active management interventions
as suggested by new information.

A forecast based on sound data that has been pro-
duced by a process that incorporates all the policies of
predictability mentioned earlier is going to be defensi-
ble in the face of any challenge or criticism. At that point
you have done your best. Let the chips fall where they
may.

Chapter 15 - Monte Carlo Method Introduction 241

Key Learnings and Takeaways

• Monte Carlo Simulation is one of the best methods
for coming up with a reasonable forecast.

• If you have data, then use that data to build your
simulation models. If you do not have the data,
then collect it and update your model(s)!

• Things to remember about Monte Carlo Simula-
tion:

– You must understand the assumptions of the
model.

– You must understand how your chosen sim-
ulation tool is implementing those assump-
tions.

– Most importantly, youhave tomanage to those
assumptions!

Chapter 16 - Getting Started
Hopefully I have convinced you by now that if you want
your process to be predictable then you need to adopt
the flowmetrics and analytics that have been presented
in this book. But how do you get started? I would not be
doing my job if I did not give you at least some pointers
on how to begin.

Defining Your Process

It may seem obvious or trivial to you, but the very
first thing you need to do to get started is define the
boundaries of your process. As I mentioned in Chapter
2, youmust first decide on a point at which you consider
work to have entered (or arrived to) your process. You
must then decide the point at which you consider work
to have exited (departed from) your process. Starting
with a definition of your process boundaries is essential
as anywork items between these two boundaries can be
considered WIP.

Remember that these boundaries are independent of
any sprint or iteration definition. That is to say, if you
use sprints or iterations to manage your process then
it is possible for work to arrive at any time during the
sprint and it is possible for work to depart at any time
during the sprint. This concept may seem anathema to
Scrum purists, yet the possibility remains. That means
that any timework comes into your process—regardless
of whether it is the beginning of a sprint or not—you
need to count that work as arrived. Likewise, if any
work exits your process—regardless of whether it is the

242

Chapter 16 - Getting Started 243

end of a sprint or not—you need to count that work as
departed.

The next thing you need to decide is which items that
fall between those two boundaries will count as WIP. As
I also mentioned in Chapter 2, the choice of items to call
WIP is up to you, butmake that choice and start tracking.
As with anything, you can always tweak that decision
later as you learn more.

Lastly, consider which of your existing policies are
in direct violation of the assumptions of Little’s Law.
Do you not explicitly control arrivals by matching them
to departures? Do you make sure that everything that
starts eventually completes (or at least tag and track
items that do not complete properly)? Do you let items
arbitrarily age due to poor pull decisions (Class of Ser-
vice, blockages, queuing, etc.)? If you currently operate
your process in blatant violation of Little’s Law, then
you may want to think about changes to implement to
get your process more aligned with that law. Remember
that each violation of one of Little’s Law’s assumptions
hampers your ability to be predictable.

Capturing Data

Once you have decided on your process policies, now all
youhave to do is capture the data. This is both easier and
harder than it sounds. To answerwhy, wemust consider
two cases.

The first case we need to consider is if you are track-
ing data manually (i.e., independent of any other Agile
tooling). In this case, you need to physically record the
date that each work item enters each step of your work-
flow. For example, let’s say your workflow is Analysis
Active, Analysis Done, Development Active, Develop-

Chapter 16 - Getting Started 244

ment Done, Test, Done. In this process, you would need
to document the day that each item entered each state.
An excerpt of what that data might look like is shown in
Figure 16.1:

Figure 16.1: Example Collected Data

You will remember that this approach was outlined
in Chapter 4 (including how to handle the case when
items move backward in your process), and I will refer
you to that Chapter for a more detailed explanation.

You may want to further augment your data with
certain item attributes. That is to say, you may want to
capture which team worked on an item, what type it
was (for example, user story, defect, etc.), if it finished
normally—to name just a few examples. The attributes
you choose to decorate your data are completely up
to you. The reason you will want to do this, however,
is those attributes will serve as filter points later. For
example, maybe we only want to see data from Team
A. Maybe we only want to see data for defects. Maybe
we want to see all the items that got cancelled while in
progress. Tagging data with appropriate attributes is a
powerful practice thatwill enhance your understanding
of overall process performance.

The second case you may need to consider is when
you are using an electronic Agile tool to manage your
work (e.g., VersionOne®, Jira, or the like). In this case

Chapter 16 - Getting Started 245

we need to mine the data out of that tool so that it
looks something like Figure 16.1. That is easier said than
done. The problem is that most Agile tools do not track
data in this way. That is not necessarily the fault of
the tool—they were not designed with a flow metrics
approach in mind. However, it does mean that it will
require some work on your part to get your data in the
format as shown in Figure 16.1. Luckily for us, most
electronic tools offer an API (or direct access via SQL)
to get to the data. The algorithm needed is going to be
tool-specific and is beyond the scope of this book, so I
will not going into any detail here. Keep inmind, though,
that you are still going to have to handle the special cases
of work flowing backward, work skipping steps, work
being cancelled versus closed, etc. Also remember that
youwill want tomine the same itemmetadata that I just
mentioned (type, team, etc.) to allow us to filter the data
later.

Anotherword of caution that I need tomention about
both cases is that your data is only as good as your
use of your Agile tracking tool—whether that tool be an
electronic system or a physical board.

Your data is only as good as your use of your
Agile tracking tool.

What Imeanby that is no data extraction schemewill
make up for abusing either your electronic or physical
board. Ifwork items are not updated in a timelymanner,
or blockers not captured properly, or items are moved
back and forth randomly, then that lack of attention to
process policies will be reflected in your data. You will
then be forced to make the awkward decision to either
try to fix the data or discard it altogether. It is a much

Chapter 16 - Getting Started 246

better strategy to make sure all teammembers use your
Agile tracking tool in an agreed upon matter so that you
can have confidence in any subsequently collected data.

HowMuch Data?

“Howmuch data do I need?” is one of the most common
questions I get when introducing these methods to my
clients. Most people assume you need copious amounts
of data in order to glean any useful information. That
is not necessarily correct. While more data is generally
better, the truth is that less (oftenmuch less) data can be
good enough.

For example, Douglas Hubbard (whose book “How to
Measure Anything” is listed in the Bibliography) advises
his clients on his “Rule of Five”:

Rule of Five – There is a 93.75% chance that
the median of a population is between the
smallest and largest values in any random
sample of five from that population.

Recall from Chapter 10 that the median is the 50th
percentile line on our Scatterplot. TheRule of Five seems
remarkable but it is true (please see Hubbard’s book for
a detailed proof as towhy this ruleworks). If you think of
your process as a randomCycle Timenumber generator,
then youwill have a very good idea ofwhere themedian
of your Cycle Time data is after only five items complete.

While powerful, the Rule of Five only gets us to
the median of our population—which is actually not
a bad place to start. But how much more data do we
need to have confidence in the overall bounds of our
process’s Cycle Time? To answer that, let’s consider a

Chapter 16 - Getting Started 247

dataset that is uniformly distributed. A uniform distri-
bution assumes that all samples from its population are
equally probable. The textbook example of a uniform
distribution is rolling a fair, six-sided die. All numbers
on the die have an equal chance of coming up on each
throw. If you were to plot the results of several rolls,
what would emerge over time is a histogramwith equal-
height bars for each number on the die. Uniform dis-
tributions are interesting to study as they have several
useful properties. For example, let’s say we have eleven
samples from a uniformly distributed population. The
fact thatwe knowwehave a uniformdistributionmeans
that there is a 90% probability that the next sample (i.e.,
the 12th sample) will be between the min and the max
of the previous eleven samples. That means that we
have a fairly good understanding of the range of our
uniform distribution after having collected only eleven
data points. Our Cycle Times for our processes are not
going to be uniformly distributed (please see Chapter
10a for more info), so we are going to need more than
eleven samples to gain insight to our world, but not
much more.

I mention the Rule of Five and Uniform Distribu-
tions to give you a feel for the greatly increased knowl-
edge that can be gained after observing only a few data
points. Do not think you need to collect hundreds or
thousands of samples over several months to have any
confidence in what your data is telling you. Probability
is on your side here. Trust that you are getting very
valuable feedback with even a very small data set.

Chapter 16 - Getting Started 248

Some Pitfalls to Consider

Once you have enough data in the correct format then it
is just a matter of creating the associated flow analytics.
Creating CFDs, Scatterplots, Histograms, etc. is fairly
straightforward using a tool like Microsoft’s Excel. All
you need to do is turn the above dates into WIP counts
for the CFD, and subtract the first date in the workflow
from the last date in the workflow to calculate Cycle
Time for the Scatterplot and Histogram. Again, I would
strongly caution against using guidance found on many
popular websites to do this because (a) those websites
do not assume you have your data in the proper format,
and (b) the instructions they give can lead to improperly
constructed analytics.

While Excel may be a great tool to use when just
starting out, you will no doubt quickly run into some
limitations with that particular software package. First
and foremost, Excel offers only a static view of your
data. It does not allow you to readily interact with your
analytics such as dynamically zooming in on a particu-
lar part of the graph, easily filtering out different types
of work items, doing on the fly metrics calculations, and
so forth. Secondly, Excel can become a bit unwieldy if
managing thousands or tens of thousands of rows of
data spread across multiple teams or departments. Still,
Excel is not a bad optionwhen starting out tomake some
quick progress.

You should also know that most major Agile tools
vendors include some basic form of the analytics pre-
sented in this book. You might be asking yourself why
you cannot just use the analytics included with your
favorite tool. There are several answers to this question.
And each answer must be considered carefully.

The first thing to consider is that while it is true that

Chapter 16 - Getting Started 249

most tools ship with something called a “Cumulative
Flow Diagram” I have yet to see an electronic tool that
generates a CFD correctly (barring the one that I will
discuss shortly). The telltale sign that a CFD has not been
constructed properly is if it has lines on it that go down.
I explained why this is the case and introduced it as CFD
Property #2 in Chapter 4, but it is worth reiterating here:

CFD Property #2: Due to its cumulative na-
ture, no line on a CFD can ever decrease (go
down).

Any time you see a CFD that has one or more lines
go down, then you can immediately tell that whoever
constructed that CFD did not account for arrivals and/or
departures correctly. Not accounting for arrivals and
departures properly invalidates any resultant analysis
of your chart.

To illustrate the point a little better, if you are cur-
rently using an electronic tool for reporting, have it
generate its CFD for you. If you do not see any lines on
the chart that go down, that is a good sign. However, as
a test, try to “turn off” some of the latter workflow steps
(if you can) starting from the bottom up. Do you see any
of the remaining lines go down now? If so, it is a safe bet
that the overall CFD has not been built according to all
of the required CFD principles.

The second telltale sign that a CFD is suspect is if it
contains a state called “Backlog”. Strictly speaking, there
is nothing wrong with displaying a backlog on a CFD,
but the question remains how is the tool calculating the
overall process approximate average Cycle Time (does
it even call this calculation an approximate average
Cycle Time or does it lead you to believe it is an exact

Chapter 16 - Getting Started 250

Cycle Time)? Again, I refer you to CFD Property #1 from
Chapter 4:

CFD Property #1: The top line of a Cumu-
lative Flow Diagram always represents the
cumulative arrivals to a process. The bottom
line on a CFD always represents the cumula-
tive departures from a process.

This property demands that overall process approx-
imate average Cycle Time always be calculated from
the top line of a CFD through to the bottom line of a
CFD. If your chart includes a backlog and your tool’s
computed Cycle Time does not include the time spent in
the backlog, then, again, you should be skeptical about
whether the tool is calculating flow metrics properly.

Another pitfall to watch out for is how your Scatter-
plot is generated—assuming your tool even generates a
Scatterplot. Your tool may call its Scatterplot a “Control
Chart”—which it most certainly is not. As Imentioned in
Chapter 10, why Control Charts (at least Control Charts
in the Shewhart and Deming tradition) are probably not
applicable to knowledge work is beyond the scope of
this book. The thing you need to watch out for, though,
is that if your tool takes a “Control Chart” approach, it
is almost certainly assuming that your data is normally
distributed. When looking at your Agile tool’s Control
Chart, look to see if displays lines that say something
like “mean plus one standard deviation” or “µ + σ”. It
might also give you an associated percentage akin to
the standardpercentages that I demonstrated in Chapter
10. In this case, that percentage is going to be based on
an assumption that your data is normally distributed—
which I can guarantee it is not. How do I know it is not?
Look at your Histogram. You may remember from your

Chapter 16 - Getting Started 251

statistics training that the shape of a normal distribution
is a bell curve. When you look at your Histogram you
will see that your data does not follow a bell curve
pattern.

Using the mean plus a standard deviation (or the
meanplus anynumber of standarddeviations) approach
and then associating the result with percentiles is dan-
gerous given that your data is not normally distributed.
You will get calculation errors that are not insignificant
and you will potentially make poor decisions based on
bad data.

The moral of this story is that when you are starting
out with this type of analysis, do not necessarily trust
the data or charts that your Agile tool displays for you.
Do not trust its associated calculations. It may seem te-
dious, but I would encourage you to initially track some
sample data yourself and then compare it to what your
electronic tool generates for you. You may be surprised
at how different those results can be. And when those
results are different, whichmethodwill you trust more?

I hope you will forgive the shameless plug, but your
other option is to use the ActionableAgileTM Analytics
tool (available at https://actionableagile.com). That tool
has been designed from the ground upwith flowmetrics
and flow analytics in mind. You can be sure that if you
get your data in the correct format (Figure 16.1) then
putting that data into the ActionableAgileTM Analytics
tool will result in flow analytics that are generated cor-
rectly. But, again, do not take our word for it. Collect the
data yourself and validate any results independently.

Chapter 16 - Getting Started 252

Conclusion

I am going to wrap up this book (the next chapter) by
taking a look at one of the largest and most success-
ful implementations of using Actionable Agile Metrics
for Predictability. The examples from the next chapter
combined with an understanding of how to avoid the
common pitfalls outlined here should have you well on
your way to a predictable process.

But before you read the case study, let’s take aminute
to review what we have learned so far.

The steps to predictability are simple:

1. Set process policies based on the assumptions of
Little’s Law—including policies around how you
define the boundaries of your process.
a. Do not start newwork at a faster rate than you

finish old work.
b. Do not allow items to age arbitrarily due to

blockages, too much WIP or poor pull policies
(Class of Service).

c. Minimize the amount of work that is started
but never finishes.

2. As you operate your process, collect data on the
basic metrics of flow.
a. Work In Progress
b. Cycle Time
c. Throughput

3. Visualize your flow metrics in flow analytics.
a. Cumulative Flow Diagrams
b. Cycle Time Scatterplots and Histograms

4. Use the analytics to take action.
a. Intervene when your process goes awry
b. Identify improvements to policies to improve

performance

Chapter 16 - Getting Started 253

c. Make forecasts

If you do these things, I promise that you will be
predictable. You will be able to answer the question
“When will it be done?”

Just as delay is the enemy of flow, any delay in imple-
menting these principles severely hampers your ability
to be predictable. Remember, the actions we take today
have the biggest impact on our predictability tomorrow.

Good luck!

PART FIVE - A CASE STUDY
FOR PREDICTABILITY

254

Chapter 17 - Actionable
Agile Metrics at Siemens HS
In the interest of full disclosure, this case study has been
previously published on two different occasions. One
version appeared on the InfoQ website and the other
on the Agile Alliance website. Bennet Vallet and I have
also presented these results at conferences all over the
world. I have included another slightlymodified version
here partly for your convenience, but mostly because
it remains, at the time of this writing, the largest and
most successful application of using actionable metrics
for predictability. If you want some ideas on how to use
the concepts of this book for your particular situation,
this case study is a great place start.

Before you get started reading, however, you should
know that this case study assumes that you are familiar
with the concepts of the metrics of flow (Chapter 2) and
their relationship via Little’s Law (Chapter 3). Further,
this case study assumes that you are familiar with how
these metrics are visualized via Cumulative Flow Dia-
grams (Chapter 5) and Cycle Scatterplots (Chapter 10).
Some familiarity with Kanban and its practices is also
useful but not required.

This case study is written from the perspective of
Bennet Vallet who partnered with me to write up his
experience with Actionable Agile Metrics.

255

Chapter 17 - Actionable Agile Metrics at Siemens HS 256

Introduction

SiemensHealth Services (HS) provides sophisticated soft-
ware for the Healthcare industry. HS had been using
traditional Agile metrics (e.g., story points, velocity) for
several years, but never realized the transparency and
predictability that thosemetrics promised. Bymoving to
the simpler, more actionable metrics of flow we were
able to achieve a 42% reduction in Cycle Time and a
very significant improvement in operational efficiency.
Furthermore, adopting flow has led to real improve-
ments in quality and collaboration, all of which have
been sustained across multiple releases. This case study
describes how moving to a continuous flow model aug-
mented Siemens’ agility and explains how predictability
is a systemic behavior that one has to manage by under-
standing and acting in accordancewith the assumptions
of Little’s law and the impacts of resource utilization.

History

Siemens Health Services, the health IT business unit of
Siemens Healthcare, is a global provider of enterprise
healthcare information technology solutions. Our cus-
tomers are hospitals and large physician group prac-
tices. We also provide related services such as software
installation, hosting, integration, and business process
outsourcing.

Thedevelopment organization for SiemensHS is known
as Product Lifecycle Management (PLM) and consists
of approximately 50 teams based primarily in Malvern,
Pennsylvania, with sizable development resources lo-
cated in India and Europe. In 2003 the company under-
took a highly ambitious initiative to develop Soarian®,

Chapter 17 - Actionable Agile Metrics at Siemens HS 257

a brand new suite of healthcare enterprise solutions.
The healthcare domain is extremely complex, under-

going constant change, restructuring, and regulation.
It should be of no surprise that given our domain, the
quality of our products is of the highest priority; in fact,
one might say that quality is mission critical. Further-
more, the solutions we build have to scale from small
and medium sized community hospitals to the largest
multi-facility healthcare systems in the world. We need
to provide world class performance and adhere to FDA,
ISO, Sarbanes–Oxley, patient safety, auditability, and
reporting regulations.

Our key business challenge is to rapidly develop
functionality to compete againstmature systems already
in the market. Our systems provide new capabilities
based on new technology that helps us to leapfrog the
competition. In this vein, we adopted an Agile devel-
opment methodology, and more specifically Scrum/XP
practices as the key vehicles to achieve this goal

Our development teams transitioned toAgile in 2005.
Engaging many of the most well-known experts and
coaches in the community, we undertook an accelerated
approach to absorbing and incorporating newpractices.
We saw significant improvement over our previous wa-
terfallmethods almost immediately and our enthusiasm
for Agile continued to grow. By September 2011 we had
a mature Agile development program, having adopted
most ScrumandXPpractices. Our Scrum teams included
all roles (product owners, Scrummasters, business ana-
lysts, developers and testers). We had a mature product
backlog and ran 30-day sprints with formal sprint plan-
ning, reviews, and retrospectives. We were releasing
large batches of new features and enhancements once
a year (mostly because that is the frequency at which
we’ve always released). Practices such as CI, TDD, story-

Chapter 17 - Actionable Agile Metrics at Siemens HS 258

driven development, continuous customer interaction,
pair programming, planning poker, and relative point-
based estimation were for the most part well integrated
into our teams and process. Our experience showed
that Scrum and Agile practices vastly improved collab-
oration across roles, improved customer functionality,
improved code quality and speed.

Our Scrum process includes all analysis, develop-
ment and testing of features. A feature is declared “done”
only once it has passed validation testing in a fully
integrated environment performed by a Test Engineer
within each Scrum Team. Once all release features are
complete, Siemens performs another round of regres-
sion testing, followed by customer beta testing before
declaring general availability and shipping to all our
customers.

Despite many improvements and real benefits re-
alized by our Agile adoption, our overall success was
limited. We were continually challenged to estimate
and deliver on committed release dates. Meeting regula-
tory requirements and customer expectations requires
a high degree of certainty and predictability. Our in-
ternal decision checkpoints and quality gates required
firm commitments. Our commitment to customers, in-
ternal stakeholder expectations and revenue forecasts
required accurate release scope and delivery forecasts
that carry a very high premium for delay.

At the program and team levels, sprint and release
deadlines were characterized by schedule pressure of-
ten requiring overtime and the metrics we collected
were not providing the transparency needed to clearly
gauge completion dates or provide actionable insight
into the state of our teams.

In the trenches, our teams were also challenged to
plan and complete stories in time-boxed sprint incre-

Chapter 17 - Actionable Agile Metrics at Siemens HS 259

ments. The last week of each sprint was always a mad
rush by teams to claim as many points as possible, re-
sulting in hasty and over-burdened story testing. While
velocity rates at sprint reviews often seemed good, re-
ality pointed to a large number of stories blocked or
incomplete and multiple features in progress with few,
if any, features completing until end of the release.
This incongruity between velocity (number of points
completed in a sprint) and reality was primarily caused
by teams starting too many features and/or stories. It
had been common practice to start multiple features at
one time to mitigate possible risks. In addition, when-
ever a story or feature was blocked (for a variety of
reasons such as waiting for a dependency from another
team, waiting for customer validation, inability to test
because of environmental or build break issues, etc.),
teams would simply start the next story or feature so
that we could claim the points which we had committed
to achieve. So, while velocity burn-ups could look in
line with expectations, multiple features were not being
completed on any regular cadence, leading to bottle-
necks especially at the end of the release as the teams
strove to complete and test features. During this period
we operated under the assumption that if we mastered
Agile practices, planned better, and worked harder we
would be successful. Heroic efforts were expected.

In November of 2011 executive management char-
tered a small team of director level managers to coor-
dinate and drive process improvement across the PLM
organization, with the key goal of finally realizing the
predictability, operational efficiency, and quality gains
originally promised by our Agile approach. After some
research, the team concluded that any changes had to
be systemic. Other previous process improvements had
focused on specific functional areas such as coding or

Chapter 17 - Actionable Agile Metrics at Siemens HS 260

testing, and had not led to real improvements across the
whole system or value stream. By value stream in this
context we mean all development activities performed
within the Scrum Teams from “specifying to done”. By
reviewing the value stream with a “Lean” perspective
we realized that our problems were indeed systemic,
caused by our predilection for large batch sizes such
as large feature releases. Reading Goldratt (Goldratt,
2004), and Reinertsen (Reinertsen, 2009)we also came to
understand the impacts of large, systemic queues. Com-
ing to the understanding that the overtime, for which
programmers were sacrificing their weekends, may ac-
tually have been elongating the release completion date
was an epiphany.

This path inevitably led us to learn aboutKanban.We
saw in Kanban a means of enforcing Lean and continu-
ous improvement across the systemwhile stillmaintain-
ing our coreAgile development practices. Kanbanwould
manage Work In Progress, Cycle Time, and Throughput
by providing a pull system and thus reduce the neg-
ative impacts of large batches and high capacity uti-
lization. Furthermore, we saw in Kanban the potential
for metrics that were both tangible (and could be well
understood by all corporate stake-holders) and provide
individual teams and program management with data
that is highly transparent and actionable.

We chose our revenue-cycle application as our pilot,
consisting of 15 Scrum teams located in Malvern, PA.,
Brooklyn, N.Y., and Kolkata, India. Although each Scrum
team focuses on specific business domains, the appli-
cation itself requires integrating all these domains into
a single unitary customer solution. At this scale of sys-
temic complexity, dependency management, and con-
tinuous integration, a very high degree of consistency
and cohesion across the whole program is required.

Chapter 17 - Actionable Agile Metrics at Siemens HS 261

With this in mind, we designed a “big-bang” approach
with a high degree of policy, work-unit, workflow, done-
ness, and metric standardization across all teams. We
also concluded that we needed electronic boards: large
monitors displayed in each team room that would be
accessible in real time to all our local and offshore
developers. An electronic board would also provide an
enterprise management view across the program and a
mechanism for real-time metrics collection. Our initial
product release using Kanban began in April 2012 and
was completed that December. Results from our first
experience usingKanbanwere far better than any of our
previous releases. Our Cycle Time looked predictable
and defects were down significantly.

Our second release began in March 2013 and fin-
ished in September of that same year. We continue
to use Kanban for our product development today. As
we had hoped, learnings and experience from the first
release led to even better results in the releases that
followed.

Actionable Metrics

Now that we had decided to do Kanban at Siemens
HS, we had to change the metrics we used so that we
could more readily align with our newfound emphasis
on flow. The metrics of flow are very different than
traditional Scrum-style metrics. As mentioned earlier,
instead of focusing on things like story points and veloc-
ity, our teams now paid attention to Work In Progress
(WIP), Cycle Time, and Throughput. The reason these
flow metrics are preferable to traditional Agile metrics
is because they are much more actionable and trans-
parent. By transparent we mean that the metrics pro-

Chapter 17 - Actionable Agile Metrics at Siemens HS 262

vide a high degree of visibility into the teams’ (and
programs’) progress. By actionable, we mean that the
metrics themselves will suggest the specific team inter-
ventions needed to improve the overall performance of
the process.

To understand how flow metrics might suggest im-
provement interventions we must first explore some
definitions. For Siemens HS, we defined WIP to be any
work item (e.g., user story, defect, etc.) that was between
the “Specifying Active” step and the “Done” step in our
workflow (Figure 17.1).

Figure 17.1: Example Kanban Board

Cycle Time was defined to be the amount of total
elapsed time needed for a work item to get from “Speci-
fying Active” to “Done”. Throughput was defined as the
number of work items that entered the “Done” step per
unit of time (e.g., user stories per week).

We have stressed throughout this paper that pre-
dictability is of paramount importance to Siemens HS.
So how was the organization doing before Kanban?

Figure 17.2 is a Scatterplot of Cycle Times for finished
stories in the Financials organization for the whole re-
lease before Kanban was introduced.

Chapter 17 - Actionable Agile Metrics at Siemens HS 263

Figure 17.2: Cycle Times in the Release before Kanban

What this Scatterplot tells us is that in this release,
50% of all stories finished in 21 days or less. But remem-
ber we told you earlier that Siemens HS was running
30 day sprints? That means that any story that started
at the beginning of a sprint had little better than 50%
chance of finishing within the sprint. Furthermore, 85%
of stories were finishing in 71 days or less—that is 2.5
sprints! What’s worse is that Figure 17.3 shows us that
over the course of the release the general trend of story
Cycle Times was getting longer and longer and longer.

Chapter 17 - Actionable Agile Metrics at Siemens HS 264

Figure 17.3: General Upward Trend of Cycle Times before the
Introduction of Kanban

Figure 17.3 is not a picture of a very predictable
process.

So what was going on here? A simplified interpreta-
tion of Little’s Law tells us that if Cycle Times are too
long, then we essentially have two options: decrease
WIP or increase Throughput. Most managers inexplica-
bly usually opt for the latter. They make teams work
longer hours (stay late) each day. Theymake teamswork
mandatoryweekends. They try and steal resources from
other projects. Some companies may even go so far
as to hire temporary or permanent staff. The prob-
lem with trying to impact Throughput in these ways is
that most organizations actually end up increasing WIP
faster than they increase Throughput. If we refer back
to Little’s Law, we know that if WIP increases faster
than Throughput, then Cycle Times will only increase.
Increasing WIP faster than increasing Throughput only
exacerbates the problem of long Cycle Times.

Our choice (eventually) was the much more sensible
and economical one: reduce Cycle Times by limitingWIP

Chapter 17 - Actionable Agile Metrics at Siemens HS 265

through the use of Kanban. What most people fail to
realize is that limiting WIP can be as simple as making
sure that work is not started at a faster rate than work is
completed (please see Figure 5.5 as an example of how
mismatched arrival and departure rates increases WIP
in the process).Matching arrival rates to departure rates
is the necessary first step to stabilizing a system. Only by
operating a stable system could we hope to achieve our
goal of predictability.

Unfortunately for us, however, the first release that
we implemented Kanban, we chose not to limit WIP
right away (the argument could be made that we were
not actually doing “Kanban” at that point). Why? Be-
cause early on in our Kanban adoption the teams and
management resisted the imposition of WIP limits. This
was not unexpected, as mandating limits on work went
against the grain of the then current beliefs. We there-
fore decided to delayuntil the thirdmonth of the release.
This allowed the teams andmanagement to gain a better
familiarity of the method and become more amenable.

The delay in implementing WIP limits cost us and
in retrospect we should have pushed harder to impose
WIP limits from the outset. As youmight expect, because
of the lack of WIP limits, the very same problems that
we saw in the previous release (pre-Kanban) started to
appear: Cycle Timeswere too long and the general trend
was that they were getting longer.

Taking a look at the CFD (Figure 17.4) in the first
release with Kanban clearly shows how our teams were
starting to work on items at a faster rate than we were
finishing them:

Chapter 17 - Actionable Agile Metrics at Siemens HS 266

Figure 17.4: CFD Early on in the first release with Kanban

This disregard for when new work should be started
resulted in an inevitable increase inWIP which, in turn,
manifested itself in longer Cycle Times (as shown in
Figure 17.5).

Figure 17.5: Scatterplot early on in the first release with Kanban

Upon seeing these patterns emerge, we instituted a
policy of limitingWIP across all teams. LimitingWIPhad

Chapter 17 - Actionable Agile Metrics at Siemens HS 267

the almost immediate effect of stabilizing the system
such that Cycle Times no longer continued to grow (as
shown in Figure 17.6).

Figure 17.6: Stabilized Cycle Times after introducingWIP Limits

Over the course of our first release with Kanban, the
85th percentile of story Cycle Time had dropped from 71
days to 43 days. And, as you can see from comparing Fig-
ure 17.4 to Figure 17.7 (the release before Kanban, and
the first release using Kanban, respectively) the teams
were suffering frommuch less variability. Less variabil-
ity resulted in more predictability. In other words, once
we limited WIP in early September 2012 the process
Cycle Times did not increase indefinitely as they did the
release before. They reached a stable state at about 41
days almost immediately, and stayed at that stable state
for the rest of the release.

This stabilization effect of limiting WIP is also pow-
erfully demonstrated in the CFD (Figure 17.7):

Chapter 17 - Actionable Agile Metrics at Siemens HS 268

Figure 17.7: CFD in the First Release with Kanban after WIP
limits were introduced

The second release after the introduction of Kanban
saw much the same result (with regard to predictabil-
ity). 85 percent of stories were finishing within 41 days
and variability was still better controlled. Looking at the
two Scatterplots side by side bears this out (Figure 17.8):

Chapter 17 - Actionable Agile Metrics at Siemens HS 269

Figure 17.8: Scatterplots of the First Release using Kanban
(above) and the Second Release of Kanban (below)

Hopefully it is obvious to the reader that by taking
action on the metrics that had been provided, we had
achieved our goal of predictability. As shown in Figure
17.8, our first release using Kanban yielded Cycle Times
of 43 days or less, and our second release using Kanban
yielded Cycle Times of 40 days or less. This result is the
very definition of predictability.

By attaining predictable and stable Cycle Times we

Chapter 17 - Actionable Agile Metrics at Siemens HS 270

would nowbe able to use thesemetrics as input to future
projections. Howwe did projections will be discussed in
more detail in the next section of this chapter.

These shorter Cycle Times and decreased variability
also led to a tremendous increase in quality (Figure
17.9):

Figure 17.9: Quality Compared between Releases

Figure 17.9 shows how Kanban both reduced the
number of defects created during release development
well as minimizing the gap between defects created
and defects resolved during the release. By managing
queues, limiting work-in progress and batch sizes and
building a cadence through a pull system (limited WIP)
versus push system (non-limited WIP) we were able to
expose more defects and execute more timely resolu-
tions. On the other hand “pushing” a large batch of re-
quirements and/or starting too many requirements will
delay discovery of defects and other issues; as defects
are hidden in incomplete requirements and code.

By understanding Little’s Law, and by looking at how
the flow appears in charts like CFDs and Scatterplots,
Siemens HS could see what interventions were neces-
sary to get control of their system. Namely, the orga-
nization was suffering from too much WIP which was,

Chapter 17 - Actionable Agile Metrics at Siemens HS 271

in turn, affecting Cycle Time and quality. In taking the
action to limitWIP, Siemens saw an immediate decrease
in Cycle Time and an immediate increase in quality.

These metrics also highlighted problems within the
Siemens HS product development process, and the fol-
lowing section of this chapter will discuss what next
steps the organization is going to implement in order to
continue to improve its system.

HowMetrics Changed Everything

Apart from the improvements in predictability andqual-
ity, we also saw significant improvements in opera-
tional efficiency. We had “real-time” insight into sys-
temic blocks, variability and bottlenecks and could take
appropriate actions quickly. In one case by analyzing
Throughput (story run rate) and Cycle Time for each
column (specifying, testing and developing), we were
able to clearly seewherewewere experiencing capacity
problems. We were also able to gauge our “flow effi-
ciency” by calculating the percentage of time stories
were being worked on or “touched” versus “waiting” or
“blocked”.Wait time is the time a story sits in an inactive
or done queue becausemoving to the next active state is
prevented by WIP limits. Blocked time is the time work
on a story is impeded, including impediments such as
build-breaks, defects, waiting for customer validation
etc. The calculation is made by capturing time spent
in the “specifying done and developing done” column
plus any additional blocked time which we call “wait
time”. (Blocked or impediment data is provided directly
by the tool we are using). Subtracting “wait time” from
total Cycle Time gives us “touched time”. Calculating
flow efficiency is simply calculating the percentage of

Chapter 17 - Actionable Agile Metrics at Siemens HS 272

total touch time over total Cycle Time. Flow efficiency
percentage can act as a powerful Key Performance Indi-
cator (KPI) or benchmark in terms of measuring overall
system efficiency.

This level of transparency, broadly across the pro-
gram and more deeply within each team enabled us
to make very timely adjustments. Cumulative flow di-
agrams provided a full picture at the individual team
and program levels where our capacity weaknesses lay
and revealed where we needed to make adjustments
to improve Throughput and efficiency. For example, at
the enterprise level using the Cumulative Flow Diagram
the management team was able to see higher Through-
put in “developing” versus “testing” across all teams
and thus make a decision to invest in increasing test
automation exponentially to re-balance capacity. This
was actually easy to spot as the “developing done” state
on the CFD consistently had stories queued up waiting
for the “testing” column WIP limits to allow them to
move into “testing”. At the team level the metrics would
be used to manage WIP by adjusting WIP limits when
needed to ensure flow and prevent the build-up of bot-
tlenecks andused extensively in retrospectives to look at
variability. By using the Scatterplot, teams could clearly
see stories whose Cycle Time exceeded normal ranges,
perform root cause analysis and take steps and actions
to prevent recurrence. The CFD also allowed us to track
our average Throughput or departure-rate (the number
of stories we were completing per day/week etc.) and
calculate an end date based on the number of stories
remaining in the backlog – (similar to the way one uses
points and velocity, but more tangible). Furthermore by
controlling WIP and managing flow we saw continued
clean builds in our continuous integration process, lead-
ing to stable testing environments, and the clearing of

Chapter 17 - Actionable Agile Metrics at Siemens HS 273

previously persistent testing bottlenecks.
The results from the first release using Kanban were

better than expected. The release completed on schedule
and below budget by over 10%. The second release was
even better: along with sustained improvements in Cy-
cle Time,we also becamemuch faster. By reducing Cycle
Time we were increasing Throughput, enabling us to
complete 33% more stories than we had in the previous
release, with even better quality in terms of number of
defects and first pass yield – meaning the percentage of
formal integration and regression tests passing the first
time they are executed. In the release prior to Kanban
our first pass yield percentage was at 75%, whereas in
the first Kanban release the pass percentage rose to 86%
and reached 95% in our second release using Kanban.

The metrics also gave us a new direction in terms of
release forecasting. By using historical Cycle Times we
could performMonte-Carlo simulationmodelling to pro-
vide likely completion date forecasts. If these forecasts
proved reliable, we would no longer need to estimate.
In our second Kanban release we adopted this practice
along with our current points and velocity estimation
planningmethods and compared the results. Apart from
the obvious difference in the use of metrics versus es-
timated points, the simulation provides a distribution
of likely completion timeframes instead of an average
velocity linear based forecast – such as a burn up chart.
Likewise Cycle Timemetrics are not based on anaverage
(such as average number of points) but on distributions
of actual Cycle Times. The Histogram in Figure 17.10 is
an example of actual historical Cycle Time distributions
that Siemens uses as input to the modelling tool. In
this example 30% of stories accounting for 410 actual
stories had Cycle Times of 9 days or less, the next 20%
accounting for 225 stories had Cycle Times of 10 to 16

Chapter 17 - Actionable Agile Metrics at Siemens HS 274

days and so forth.

Figure 17.10: Cycle Time Distributions

What we learned was that velocity forecasts attempt
to apply a deterministic methodology to an inherently
uncertain problem. That type of approach never works.
By using the range or distributions of historical Cycle
Times from the best to worst cases and simulating the
project hundreds of times, the modelling simulation
provides a range of probabilistic completion dates at dif-
ferent percentiles. For example see Figure 17.11 below
showing likely completion date forecasts used in release
planning. Our practice is to commit to the date which is
closest to the 85th percent likelihood as is highlighted in
the chart. As the chart shows we are also able to use the
model to calculate likely costs at each percentile.

Chapter 17 - Actionable Agile Metrics at Siemens HS 275

Figure 17.11: Result of Monte-Carlo simulation showing proba-
bility forecast at different percentages

Over the course of the release the model proved ex-
tremely predictive;moreover, it also provided to Siemens
the ability to perform ongoing risk analysis and “what-
if” scenarioswith highly instructive and reliable results.
For example, in one case, to meet an unexpected large
scope increase on one of the teams, the Program Man-
agement Team was planning to add two new Program-
mers. The modelling tool pointed to adding a Tester
to the team rather than adding programming. The tool
proved very accurate in terms of recommending the
right staffing capacity to successfully address this scope
increase.

At the end of the day, it was an easy decision to
discard story point velocity based estimation and move
to release completion date forecasts. The collection of

Chapter 17 - Actionable Agile Metrics at Siemens HS 276

historical Cycle Time metrics that were stable and pre-
dictable enabled Siemens to performMonte-Carlo simu-
lations, which provided far more accurate and realistic
release delivery forecasts. This was a huge gap in our
Agile adoption closed. In analyzing themetrics, Siemens
also discovered that there was no correlation between
story point estimates and actual Cycle Time.

Siemens also gained the ability to more accurately
track costs; as we discovered that we could in fact corre-
late Cycle Time to actual budgetary allocations. Siemens
could now definitively calculate the unit costs of a story,
feature and/or a release. By using the modelling tool
we could now forecast likely costs along with dates.
Moreover, we could put an accurate dollar value on
reductions or increases in Cycle Times.

The metrics also improved communication with key
non PLM stake-holders. It had always been difficult
translating relative story points to corporate stakehold-
ers who were always looking for time based answers
and who found our responses based on relative story
points confusing.Metrics such as Cycle TimeandThrough-
put are very tangible and especially familiar in a com-
pany such as Siemens with a large manufacturing sec-
tor.

Implementing Kanban also had a positive impact
on employee morale. Within the first month, Scrum-
masters reported more meaningful stand-ups. This sen-
timent was especially expressed and emphasized by our
offshore colleagues, who now felt a much higher sense
of inclusion during the stand-up. Having the same board
and visualization in front of everyone made a huge
difference on those long distant conference calls be-
tween colleagues in diametrically opposed time zones.
While there was some skepticism as expected, overall
comments from the teams were positive; people liked

Chapter 17 - Actionable Agile Metrics at Siemens HS 277

it. This was confirmed in an anonymous survey we did
four months into the first release that we used Kanban:
the results and comments from employees were over-
whelmingly positive. Furthermore, as we now under-
stood the impact of WIP and systemic variability, there
was less blame on performance and skills of the team.
The root of our problem lay not in our people or skills,
but in the amount of Work In Progress.

Conclusion

Kanbanaugmented and strengthenedour keyAgile prac-
tices such as cross-functional Scrum teams, story driven
development, continuous integration testing, TDD, and
most others. It has also opened the way to even greater
agility through our current plan to transition to contin-
uous delivery.

Traditional Agile metrics had failed Siemens HS in
that we did not provide the level of transparency re-
quired to manage software product development at this
scale. Looking at a burn-down chart showing average
velocity does not scale to this level of complexity and
risk. This had been a huge gap in our Agile adoption
which was now solved.

Understanding flow—and more importantly under-
standing the metrics of flow—allowed Siemens to take
specific action in order improve overall predictability
andprocess performance.On this note, the biggest learn-
ing was understanding that predictability was a sys-
temic behavior that one has to manage by understand-
ing and acting in accordance with the assumptions of
Little’s law and the impacts of resource utilization.

Achieving a stable and predictable system can be ex-
tremely powerful. Once you reach a highly predictable

Chapter 17 - Actionable Agile Metrics at Siemens HS 278

state by aligning capacity and demand; you are able to
see the levers to address systemic bottle-necks and other
unintended variability. Continuous improvement in a
system that is unstable always runs the risk of improve-
ment initiatives that result in sub-optimizations.

The extent of the improvement we achieved in terms
of overall defect rates was better than expected. Along
with the gains we achieved through managing WIP;
we had placed significant focus on reinforcing and im-
proving our CI and quality management practices. Each
columnhad its owndoneness criteria andby incorporat-
ing “doneness procedures” into our explicit policies we
were able to ensure that all quality steps were followed
before moving a story to the next column – for example
moving a story from “Specifying” to “Developing”. Most
of these practices had predated Kanban; however the
Kanban method provided more visibility and rigor.

The metrics also magnified the need for further im-
provement steps: The current Kanban implementation
incorporates activities owned within the Scrum Teams;
but does not extend to the “backend process” – regres-
sion testing, beta testing, hosting, and customer imple-
mentation. Like many large companies Siemens contin-
ues tomaintain a large batch release regression andbeta
testing process. Thus begging the question; what if we
extended Kanban across the whole value stream from
inception to implementation at the customer? Through
the metrics, visualization, managing WIP and continu-
ous delivery we could deliver value to our customers
faster and with high quality. We could take advantage
of Kanban to manage flow, drive predictable customer
outcomes, identify bottle-necks and drive Lean contin-
uous improvement through the testing, operations and
implementation areas as well. In late 2013 we began
our current and very ambitious journey to extend the

Chapter 17 - Actionable Agile Metrics at Siemens HS 279

Kanban method across the whole value stream.
Finally it is important to say that the use of metrics

instead of estimation for forecasting has eliminated the
emotion and recrimination associated with estimation.
Anyone wishing to go back to estimating sprints would
be few and far between, including even those who had
previously been the most skeptical.

Key Learnings and Takeaways

• Traditional Agile metrics were not working for
Siemens HS as those metrics did not provide the
transparency andpredictability requiredby Siemens
HS’ customers and management.

• Siemens HS decided to dump Story Points and Ve-
locity in favor ofWIP, Cycle Time, and Throughput.

• After that shift, Siemens HS quickly discovered the
root of their problem was not people or skillsets
but too much WIP.

• By controlling WIP, Siemens HS was able to reduce
Cycle Time from 71 days at the 85th percentile to 43
days at the 85th percentile.

• Controlling WIP also increased the quality of the
HS releases dramatically.

• The second release after limiting WIP produced
story Cycle Times of 40 days at the 85th percentile.

• Having predictable Cycle Times allowed Siemens
to mostly abandon their old estimation practices.

• The use of metrics instead of estimation for fore-
casting has eliminated the emotion and recrimina-
tion associated with estimation.

• Predictable Cycle Times have also allowed Siemens
HS to begin to utilize more advanced forecasting
techniques like the Monte Carlo Method.

Acknowledgements
As any author will tell you, there may be one name on
the front cover, but a book is only possible due to the
hard work of numerous people. If I may, I’d like to call
your particular attention to the efforts of the few of
those listed here.

First, I have to say there is no one in the software in-
dustry who understands the principles of flow and how
to apply those principles to teams better than Frank
Vega. If you want to know anything about flow metrics
and analytics, Frank is the guy to ask—which I did on
way too many occasions, I’m sure. When reviewing this
book, his comments were insightful, thought-provoking,
and pragmatic. He is one of the few people whose opin-
ion I implicitly trust on this stuff.

I’m not sure there is anyone in the Agile community
who asks tougher questions than Nannette Brown. She
constantly challenged me to come up with better an-
swers and was (is) never satisfied until I did.

To Mike Longin and Prateek Singh I have to say
thanks for your willingness to learn and provide valu-
able feedback on how to introduce these concepts to
teams. We’ve got much more work to do!

Arin Sime is one of the few truly great minds in all
of Agile. Thanks for giving me the opportunity to share
my ideas.

Troy Tuttle has built one of the greatest Lean com-
munities from scratch and, more importantly, has al-
lowed me to contribute when I can. The whole Lean-
Agile movement would be a much better place with
more people like Troy.

280

Acknowledgements 281

Steve Reid refuses to allow his organization to stag-
nate. In his mind there is always room for improvement
and to his great credit he allows his team members the
room to experiment and innovate. Thanks, Steve, for
letting me be a part of that ride.

Dennis Kirlin is one of those guys who you can
sit down with and solve world hunger over a cup of
coffee—or awhisky as the casemay be. There is a reason
his Agile teams are the envy of his whole city.

For those of you who don’t know, Darren Davis is
the true “Father of Kanban”. It was his matter-of-fact
approach to solving real-world problems that got the
movement off of the ground. I was fortunate enough
to learn from him as he guided me through the process
of shedding the shackles of sprints. Because of him I’ve
never looked back.

A special thanks to Troy Magennis for two reasons.
First, for daring the community to get out of its comfort
zone and think about the world more probabilistically;
and, second, for his gracious permission to let me use
his Monte Carlo Simulation tool to run my crazy experi-
ments. I’ve mentioned this before, but I’ll say it again: if
you don’t know about Troy’s work then you need to look
him up.

Bennet Vallet is one of those rare individuals who
constantly—and I mean constantly—pushes himself to
learn and get better. Combine that with his willingness
to do whatever is needed to get the correct result and
you get a formidable force. He has been and continues
to be a great mentor to me. Without his prodding this
bookmay never have seen the light of day. True to form,
he is already asking for the next version that covers the
more advanced topics.

Vanessa Vacanti is the James Brown of knowledge
work. She constantly remindedme to keep this material

Acknowledgements 282

in the realm of the practical. Thanks for all of your help,
LEHjr!

To my twin sister, Dina Vacanti. You don’t get to
choose your siblings, but if I could, I would choose you
every time.

Al and Pat Vacanti are the whole reason I was able
to write this book. How do you ever say thanks enough
for that?

As always, Todd Conley remains my wizard behind
the curtain. Toddneverwavered inhis beliefwhen I first
pitched the idea of a flow analytics tool to him two years
ago, and he has been tireless in his pursuit of perfection
in developing that product ever since. Todd has a no-
nonsense approach to building software and is without
a doubt the best developer I have ever known. He is a
trusted advisor, invaluable colleague, and great friend.

Last, but absolutely not least, I’d like to thank my
wife, Ann. For her role in all of this, she deserves top
billing and the “and”. She deserves the EGOT. For putting
upwithme, she deserves both the Nobel Prize and saint-
hood. No matter how preoccupied, absent-minded, or
just plain stupid I’ve been she has always supportedme.
In the whole time that I’ve known her, whenever I’ve
wanted to take risks both professionally and personally,
she has never said no. I can’t imagine a better partner.
Nor would I want to.

All of the people listed above have been great collab-
orators for me. If this book falls short then I can’t fault
any of them. That blame lies solely with me.

And, lastly, to you, the reader. Thanks for reading!
Daniel S. Vacanti
March 2015

Bibliography
Bertsimas, D., D. Nakazato. The distributional Little’s
Law and its applications. Operations Research. 43(2)
298–310, 1995.

Brumelle, S. On the relation between customer and
time averages in queues. J. Appl. Probab. 8 508–520, 1971.

Deming, W. Edwards. The New Economics. 2nd Ed.
The MIT Press, 1994

Deming,W. Edwards.Out of the Crisis. TheMIT Press,
2000.

Glynn, P. W., W. Whitt. Extensions of the queueing
relations L = λW and H = λ G. Operations Research. 37(4)
634–644, 1989.

Goldratt, Eliyahu M., and Jeff Cox. The Goal. 2nd Rev.
Ed. North River Press, 1992.

Heyman, D. P., S. Stidham Jr. The relation between
customer and time averages in queues. Oper. Res. 28(4)
983–994, 1980.

Hopp, Wallace J., and Mark L. Spearman. Factory
Physics. Irwin/McGraw-Hill, 2007.

Hubbard, DouglasW.How toMeasureAnything: Find-
ing the Value of Intangibles In Business. John Wiley &
Sons, Inc., 2009.

Little, J. D. C.A proof for the queuing formula: L = λW.
Operations Research. 9(3) 383–387, 1961.

Little, J. D. C., and S. C. Graves. “Little’s Law.” D.
Chhajed, T. J. Lowe, eds. Building Intuition: Insights from
Basic Operations Management Models and Principles.
Springer Science + Business Media LLC, New York, 2008.

Magennis, Troy. Forecasting and Simulating Software
Development Projects. Self-published, 2011.

283

Bibliography 284

Reinertsen, Donald G. Managing the Design Factory.
Free Press, 1997.

Reinertsen, Donald G. The Principles of Product De-
velopment Flow. Celeritas Publishing, 2009.

Ries, Eric. The Lean Startup. Crown Business, 2011.
Roubini, Nouriel, and StephenMihm.Crisis Economics.

Penguin Books, 2010.
Savage, Sam L. The Flaw of Averages. John Wiley &

Sons, Inc., 2009.
Shewhart, W. A. Economic Control of Quality of Man-

ufactured Product, 1931.
Shewhart, W. A. Statistical Method from the View-

point of Quality Control, 1939.
Stidham, S., Jr. L = λ W: A discounted analogue and a

new proof. Operations Research. 20(6) 1115–1126, 1972.
Stidham, S., Jr. A last word on L= λ W. Operations

Research. 22(2) 417–421, 1974.
Vacanti, Daniel S. and Bennet Vallet. “ActionableMet-

rics at Siemens Health Services”. AgileAlliance.com. 1
Aug 2014.

Vallet, Bennet. “Kanban at Scale: A Siemens Success
Story.” Infoq.com. 28 Feb 2014.

Vega, Frank. “Are You Just an Average CFD User?”
Vissinc.com. 21 Feb 2014.

Vega, Frank. “The Basics of Reading Cumulative Flow
Diagrams”. Vissinc.com. 29 Sep 2011.

Wheelan, Charles. Naked Statistics. W. W. Norton &
Company, 2013.

Wheeler, Donald J., and David S. Chambers. Under-
standing Statistical Process Control. 2nd Ed. SPC Press,
1992.

Wikipedia “Monte Carlo method.”Wikipedia.com 01
Aug 2014.

Wikipedia “UniformDistribution.”Wikipedia.com 01
Aug 2014.

Bibliography 285

Wikipedia “UniformDistribution (discrete).”Wikipedia.com
01 Aug 2014.

About the Author
Daniel Vacanti is a 20-year software industry veteran
who got his start as a Java Developer/Architect and who
has spent most of the last 15 years focusing on Lean and
Agile practices. In 2007, he helped to develop theKanban
Method for knowledge work. He managed the world’s
first project implementation of Kanban that year, and
has been conducting Kanban training, coaching, and
consulting ever since. In 2011 he founded Corporate
Kanban, Inc., which provides world-class Lean training
and consulting to clients all over the globe–including
several Fortune 100 companies. In 2013 he co-founded
ActionableAgileTM which provides industry leading pre-
dictive analytics tools and services to any Lean-Agile
process. Daniel holds a Masters in Business Adminis-
tration and regularly teaches a class on lean principles
for softwaremanagement at the University of California
Berkeley.

286

	Table of Contents
	Preface
	PART ONE - FLOW FOR PREDICTABILITY
	Chapter 1 - Flow, Flow Metrics, and Predictability
	Chapter 2 - The Basic Metrics of Flow
	Chapter 3 - Introduction to Little’s Law
	PART TWO - CUMULATIVE FLOW DIAGRAMS FOR PREDICTABILITY
	Chapter 4 - Introduction to CFDs
	Chapter 5 - Flow Metrics and CFDs
	Chapter 6 - Interpreting CFDs
	Chapter 7 - Conservation of Flow Part I
	Chapter 8 - Conservation of Flow Part II
	Chapter 9 - Flow Debt
	PART THREE - CYCLE TIME SCATTERPLOTS FOR PREDICTABILITY
	Chapter 10 - Introduction to Cycle Time Scatterplots
	Chapter 10a - Cycle Time Histograms
	Chapter 11 - Interpreting Cycle Time Scatterplots
	Chapter 12 - Service Level Agreements
	PART FOUR - PUTTING IT ALL TOGETHER FOR PREDICTABILITY
	Chapter 13 - Pull Policies
	Chapter 14 - Introduction to Forecasting
	Chapter 15 - Monte Carlo Method Introduction
	Chapter 16 - Getting Started
	PART FIVE - A CASE STUDY FOR PREDICTABILITY
	Chapter 17 - Actionable Agile Metrics at Siemens HS
	Acknowledgements
	Bibliography
	About the Author

